ILT-APR Number 26 Issued:July 2014 ISSN 1340-6167

公益財団法人 レーザー技術総合研究所 Institute for Laser Technology

はじめに

当研究所は、1987年の創設以来、レーザーおよびその関連産業の振興を図り、我が国 の学術の進展と科学技術の発展に貢献することを目的として、レーザーとその応用に関す る研究開発、調査、情報の収集・提供、人材の養成などの事業を鋭意推進してまいりまし た。長年にわたり、関係省庁、産業界、ならびに大学、研究機関の皆様方から、ご指導、 ご支援を賜りましたこと、心から深く感謝申し上げます。

基礎研究の成果を産業界に役立てることを使命とし、レーザーの高性能化研究や、電 カ・原子力、環境・宇宙、物質・材料、生命科学、建築・土木など幅広い分野におけるレ ーザー応用研究を行ってまいりました。近年は、「次世代素材等レーザー加工技術開発プ ロジェクト」や「高効率 LPP 法 EUV 光源の実証開発」などの NEDO プロジェクトにも参画 し、レーザーの高出力化に寄与し得るビーム結合技術や次世代半導体製造に必須の EUV 光源プラズマの研究を進めています。JR 西日本などとの協力の下で開発してきたレーザ ー超音波を利用したコンクリート建造物の欠陥検査技術では、昨年のレーザー学会進歩賞 に引き続き、今年度は土木学会より技術開発賞を受賞いたしました。省エネルギー化に資 する先端材料のフェムト秒レーザー微細加工、レーザーによる遠隔微量分析技術、光学素 子の損傷耐力評価などでは産業界との強い連携の下で研究を進めており、新しい成果が生 まれてきています。

平成 23 年度から始まった第 4 期科学技術基本計画では科学技術イノベーションの戦略 的推進が大きな柱として掲げられています。総合科学技術・イノベーション会議は、エネ ルギー、健康長寿、次世代インフラ、地域資源、震災からの復興・再生の 5 つを重点分野 とする科学技術イノベーション総合戦略を策定しました。光・レーザー技術は、ナノテク ノロジー、ICT、環境関連技術とともに、5 つの重点課題に共通する分野横断技術とされ ています。「21 世紀は光の時代」ともいわれ、レーザー・光技術は先進科学、先端産業 を牽引する基盤技術として今後ますますその重要性が増していくものと期待されています。 当研究所は、国および産業界が目指している開発研究について牽引的役割を果たすべく研 究活動を活性化するとともに、セミナーやシンポジウムの開催、広報誌の発行などの事業 も積極的に進め、成果の情報発信に努めてまいる所存でございます。

このたび研究所年報第 26 巻(平成 25 年度研究成果報告書)を発行いたしました。何 卒ご高覧のうえ、ご助言、ご指導下さいますようお願い申し上げます。

平成 26 年 7 月

公益財団法人 レーザー技術総合研究所 理事長 橋本徳昭

ILT2014 年報(Annual Progress Report 2013-2014)

目 次

はじめに

研究報告書

レーザーエネルギー研究チーム

テラヘルツ波による絶縁材料欠陥診断研究		L
メタマテリアルによる電磁モードの存在条件研究	£ ••••••••••••••••••••••••••••••••••••	ł

レーザープロセス研究チーム

CFRP のレーザー微細加工	7
Filled-aperture coherent summation technique for multiple high average power laser beams	11
低温冷却 Yb:YAG TRAM レーザーの時間変化計測	15
レーザーラマン分光法による変圧器油中フルフラールの分析の分析	18

レーザー計測研究チーム

レーザーを用いたコンクリート埋め込みボルトの健全性評価技術の開発	22
Two-beam probing interferometry: bridge inspection	25
レーザーを用いた碍子表面塩分計測	29

レーザーバイオ化学研究チーム

レーザー計測による光活性蛋白質のフェムト秒反応ダイナミクス	34
Ultrafast fluorescence up-conversion technique and its applications to flavoproteins	39
液中レーザーアブレーション法によるナノ粒子作製:溶融塩の効果	45

理論・シミュレーションチーム

極端紫外(EUV)光源開発研究	50
レーザー生成高速電子・イオンを用いたプラズマ加熱	53
レーザー核融合炉壁のアブレーション・・・・	56
レーザーピーニングの統合シミュレーションによる塑性圧縮応力の評価	59
シミュレーションによるレーザー核融合炉設計研究	66

レーザー技術開発室

	H25	年度	ミレ		ゲー損傷耐力データベース化試験	····· 70
	新レ	-+	デー	材料	♀開発 ・・・・・	
発表	したう	とり	ス	ト		
重	業業	R 4	<u>+</u>	聿	•••••••••••••••••••••••••••••••••••••••	
知		部	-	N		
堆		₩. ∃	_	些		110
17円 三五	ルミ	₹ ¥		見		101
計	- ¹⁷	我	<u> </u>	貝	•••••••••••••••••••••••••••••••••••••••	121
捚.	爭	· Ĕ	Ē_	爭	•••••••••••••••••••••••••••••••••••••••	122
評調	義員 通	選定	'委	員	•••••••••••••••••••••••••••••••••••••••	······123
企	画	委		員		······124
賛	助	会		員		
お	わ	IJ	-	に		

研究報告書

テラヘルツ波による絶縁材料欠陥診断研究

レーザーエネルギー研究チーム

李 大治、本越伸二

1. はじめに

テラヘルツ波は周波数でいうと0.1~10 THz、波長に 換算すると3mm~30 µm 程度で、電波と赤外光の間に 当たる領域の電磁波である。テラヘルツ波の最大の特徴 は、光と電波の両方の長所を兼ね備えていることにある。 物質中や大気中の伝播特性は電波に近く、指向性やコヒ ーレンシーを持つことから光にも近いと言える。また、 電波に比べて周波数が非常に高く、光に比べると透過特 性に優れているなど、電波や光にはない特長を持つ。そ のため、プラスチックや紙等に対する透過率が高いこと や生体に害を与えない、材料物性を調べるのに有用であ るなど様々な応用が期待されている。しかし光源や検出 器ともに適切なものがなかったため、電磁波利用におけ る谷間とも呼ばれてきた。現在、テラヘルツ波の発生方 法として、様々なものが提案されている¹²⁾。大型のシ ンクロトロン放射設備では、数10Wのテラヘルツ波の 発生に成功している。研究用としては、短パルスレーザ ーと光伝導アンテナを用いた装置が、数 THz の電磁波 を容易に得られることから現在広く使用されている。ま た、より小型のものとして、量子カスケード半導体素子 や、非線形光学結晶を用いた差周波テラヘルツ波発生技 術などが、積極的に研究されている。一方、テラヘルツ 波を用いた診断応用では、電子部品、医薬品、文化財な ど非破壊検査装置として実用化が進んでいる。電力設備 診断においても、ケーブル絶縁層、遮熱コーティング層、 塗装下の鋼材発錆など、先行研究が行われている³⁻⁵⁾。

我々は電力設備用の絶縁材料内部の非破壊検査や半 導体内部に隠された欠陥や劣化の検査など、新しい非破 壊・非接触センシング技術に関する研究に着手した。本 文では、透過型計測系を用いた研究の進展状況を報告す る。

2. テラヘルツ発生・計測装置

図1 THz 発生・計測装置概念図

実験装置としてテラヘルツ時間領域分光法を基にし た図1に示すような計測装置を構築した。光源にはフェ ムト秒レーザーを用い、テラヘルツ波は光伝導アンテナ により発生検出を行っている。チタンサファイアレーザ 一装置(波長800 nm、100 fs、80 MHz)から出力された 約40mWのレーザー光は、半透鏡により励起光とプロー ブ光に分けられる。約20mWの励起光を、放射用光伝導 アンテナの5 µm幅のギャップに集光する。アンテナへ 10.3 kHz、20 Vmのバイアス電圧を印加することにより、 テラヘルツ帯の電磁波を発生させる。放射されたテラヘ ルツ波は、口径25mmの放物面鏡により、平行光に変換 して検出系に伝送する。サンプルを測定するために、集 光レンズ2枚を設置してビームスポットを作り、ビーム スポットにアパーチャとサンプルホルダーを設置した。 テラヘルツ波イメージングによる検査・診断を実現する ため、サンプルホルダーは2軸の移動ステージにより走 査できるようになっている。一方、プローブ光は時間遅 延ラインを通過して検出用光伝導アンテナのギャップ 上に集光される。サンプルを透過したテラヘルツ波も検 出用光伝導アンテナに集光され、プローブ光と時間的に 一致した時にテラヘルツ波電場に応じた微弱電流を発

生する。この電流をプローブ光の遅延時間を変えながら 検出することにより、テラヘルツ波電場の時間依存デー タを得る。開発したデータ収集・処理・制御用ソフトを 用いて、テラヘルツ波電場の時間波形を自動的に検出し、 その波形をフーリエ変換することにより周波数スペク トルが得られる。更に、サンプル移動ステージと同期す ることによって、サンプル内部の欠陥や劣化等をイメー ジ化することが可能となる。図2に実験装置のテラヘル ツ波の発生部、検出部、集光レンズ、サンプルステージ、 時間遅延ライン、イメージングソフトの画面などを示す。

3. 絶縁材料のテラヘルツ帯透過特性

図2 実験装置写真

電力設備の電気絶縁には、固体、気体、液体など多く の材料が使用されている。本研究では、代表的な5種類 の材料についてテラヘルツ波透過特性を評価した。サン プルの厚みはそれぞれ異なり、シリコンゴムが5mm、 FRP が3mm、PVC が4mm、ポリエチレンが3mm、エ ポキシが4mm である。サンプルが無い場合(参照)と、 有る場合(サンプル)で、それぞれ透過伝搬してきたテ ラヘルツ波を計測し、サンプル信号と参照信号の比を算 出することにより、材料の透過率を求めた。測定した透 過率スペクトルを図3に示す。0.2 THz 以下で計測され た信号は、テラヘルツ光学系の物理的サイズの影響によ り誤差が大きく信頼性がないので削除した。1 THz 以上 の値もまた、サンプルの吸収により信号対雑音比が低い ことから削除した。図3から、ポリエチレンの透過率は 全帯域で1に近いことが分かる。一方、FRPの透過性は 周波数に敏感で、0.2 THzにおいて透過率が0.5 である が、周波数が上がると急激に減衰する。その他の材料も FRPによく似た透過特性を示した。材料の透過性を把握

図4 イメージングにより欠陥検出

することにより、個々の材料に対して適切な測定周波数 を選ぶことが診断応用には重要である。

4. イメージングによる欠陥検出

テラヘルツイメージングに基づく欠陥検出を行うた めに、模擬欠陥のあるサンプルを用いて測定実験を行っ た。内部に針の挿入痕(直径0.7 mm)を付けたポリエチ レンと金属針(直径0.7 mm)を挿入したエポキシをサン プルに用いた。測定間隔を0.25 mmとし、欠陥部を含む 10 mm×10 mmの領域を二次元走査した。図4(a)はエポ キシサンプルのイメージである。金属の針はテラヘルツ 波を透過しないため、強度の違いから検出できている。 図4(b)に示すのはポリエチレンサンプルのイメージで ある。針の挿入痕の部分は、屈折散乱等による透過率の 違いから確認できている。見かけ上の欠陥幅が実際の欠 陥幅よりも大きくなった原因は、測定に用いているテラ ヘルツ波の波長やサンプル走査時の空間分解能の影響 である。

5. まとめ

テラヘルツ波透過特性測定装置を構築し、代表的な絶縁材料の透過スペクトルのデータを取得すると共に、掃引走査装置を導入することによりサンプルの模擬欠陥 検出が可能であることを明らかにした。 今後、具体的な電力設備を想定し、その劣化診断への テラヘルツ波の利用と技術的課題に取り組む予定であ る。

本研究は、関西電力からの受託研究により実施された。 また THz-TDS 装置構築および測定解析について、大阪 大学レーザーエネルギー学研究センターの北原英明氏 に多大な御指導を頂いた。この場を借りて感謝したい。

参考文献

- テラヘルツテクノロジーフォーラム編: テラヘルツ技術総 覧NGT, 東京, 2007.
- 西澤間一編著: テラヘルツ波の基礎と応用,工業調査会,東京, 2005.
- 3) K. Liu: Applied Physics Letters, 81, 4115-4117, 2002.
- 4) D. Grischkowsky: Applied Physics Letters, 57, 1055-1057, 1990.
- 5) P. Jepsen: Laser Photonics Review, 5, 124-166, 2011.

メタマテリアルによる電磁モードの存在条件研究

レーザーエネルギー研究チーム

李 大治、萩行正憲¹、宮本修治² ¹大阪大学レーザーエネルギー学研究センター ²兵庫県立大学高度産業科学技術研究所

1. はじめに

通常の物質では屈折率は正であり、その中を伝播する 電磁波は電場、磁場、波数ベクトルの方向が右手系の関 係になるため右手系物質と呼ばれる。しかし、誘電率と 透磁率が共に負の物質は、負の屈折率を有し、その中で は電場、磁場、波数ベクトルの方向が左手系の関係を持 っため、左手系物質(NIM)と呼ばれる。このような系は 全く新しい光学材料として機能する可能性を秘め、逆チ ェレンコフ放射や逆ドップラー偏移などの特異な電磁 気現象を示し、研究が注目を集めているり。最近、これ らの人工材料 (メタマテリアル) の製作技術で進展が見 られ、また製作した材料の性能も向上していることから 24)、新しい物理現象および新しい応用領域の開拓に向け ての努力が始まっている 57)。真空と誘電体との境界面 に沿って伝搬する表面電磁波は、チェレンコフ型の電磁 波放射源の開発に重要な役割を果たすことはよく知ら れていることである⁸¹⁰。一定の速度で誘電体表面を移 動する電子ビームは、電子の速度と同期した位相速度を もつ表面電磁波と相互作用し、また、発振条件を満足さ せれば、電磁波が増幅されて空間に放出される。そのた め、表面電磁波の研究は小型の電磁波放射源の開発に重 要であり、特に、大出力テラヘルツ波源への応用研究が 活発に行われている。A.V. Kats らは、異なる材料の界面 で励起される電磁現象を研究し、負の屈折率媒質の表面 に電磁波が存在する条件を導出した 11。しかしながら、 その条件は誘電率と透磁率への要求が厳しすぎるので、 小型電磁波放射源の開発には適用できないことがわか った。この問題を解決するために、我々は媒質平板の下 に完全導体の基板を使う発想を提案した。完全導体の基 板を利用すると、電磁界の境界条件が変わり、それによ り誘電率と透磁率への制限を緩めることが可能と考え

られる。本文では、均質で、等方的、線形の負の屈折率 媒質から作られた平板を考え、その表面に伝搬する電磁 波の存在条件に関する解析結果を報告する。

2. 理論解析

まず、図 1(a)に示すように、真空と無限に厚い媒質平板との二次元スキームを考える。媒質平板は比誘電率 ε_r と比透磁率 μ_r を有し、負の屈折率媒質の場合には、 比誘電率と比透磁率の実数部が負であり、正の屈折率媒 質の場合には、比誘電率と比透磁率の実数部が正である。 ビームと電磁波の相互作用では、縦方向の電場成分が主 要であるから、理論解析では、縦の電場を持つ磁気的横 波 (TM タイプモード) に着目する。図 1(a)に示すスキ ームによると、真空領域(x > 0)における、y 方向の磁 場成分は下式のように与えられる。

$$H_{v}^{(1)} = Ae^{-\alpha x}e^{jkz} \tag{1}$$

ここで、 $\alpha = \sqrt{k^2 - \omega^2/c^2}$ 、 ω は角周波数、cは真空中の光速度、Aは係数である。一方、媒質領域(x < 0)における y 方向の磁場成分は、

$$H_{v}^{(2)} = Be^{\beta x}e^{jkz}$$
⁽²⁾

と表される。ここで、 $\beta = \sqrt{k^2 - \varepsilon_r \mu_r \omega^2 / c^2}$ 、B は 係数である。電磁波の表面モードは、x = 0の境界面か ら離れるにつれて指数関数的に減衰する特徴があり、こ れにより $\alpha > 0 \ge \beta > 0$ の条件が得られる。他の電磁場 成分は(1)と式(2)を用いてマクスウル方程式式の関係か ら求めることができる。

電磁場の各成分を用いて電磁界の境界条件を導入す ると、表面電磁波の分散方程式が導出される。

$$\varepsilon_r \frac{\alpha}{\beta} = -1 \tag{3}$$

これにより z 方向の伝搬定数 k を推定できる。

$$k^{2} = \frac{\omega^{2}}{c^{2}} \frac{\varepsilon_{r} (\varepsilon_{r} - \mu_{r})}{\varepsilon_{r}^{2} - 1}$$
(4)

電磁波の伝搬条件k > 0、および表面モードの減衰条件 $\alpha > 0 \geq \beta > 0$ により、表面電磁波が存在するための誘 電率と透磁率への要求条件が導出できる。それは図 2 のグレーの領域で与えられる。図2より、表面電磁モー

ドは誘電率と透過率の狭い領域でのみ存在できること がわかった。誘電率と透過率の制限により、負の屈折率 媒質で小型チェレンコフ型電磁波放射源を実現するの が非常に難しいことがわかる。この限界を大幅に緩和す るために、図1(b)に示すような完全導体基板を付ける構 造を考える。導体基板に入射する電磁波が反射されるこ とで電磁的境界条件が変化する。それにより表面電磁波 存在の制限を大幅に改善することが可能である。完全導 体基板を付けた構造において、媒質中(x<0)でのy方向 の磁場成分を

$$H_{y}^{(2)} = (C\cos(\tau x) + D\sin(\tau x))e^{jkz}$$
(5)

と書き直す。ここで、 $\tau = \sqrt{\varepsilon_r \mu_r \omega^2 / c^2 - k^2}$ 、C と D は係数である。そうすると、表面電磁波の分散方程 式は次の式のように導ける。

$$\varepsilon_r \frac{\alpha}{z} = \tan(\tau h) \tag{6}$$

ここで、 h は媒質平板の厚みである。前述の処理と同様に、k > 0、 $\alpha > 0$ 、 $\beta > 0$ の条件から表面電磁モードの存在条件を求めることができる。

$$\varepsilon_r \mu_r > 1 \tag{7}$$

これを図2のストライプ領域に示す。予測の通り、グレ 一範囲に比べてストライプ領域の方が広くなり、従来の 表面電磁波存在の限界が突破された。正の屈折率媒質に よる表面電磁波についての研究⁸⁻¹⁰が既に行われている が、負の屈折率のほうはまだ開拓されていない。次に、 負の屈折率媒質において、 $\varepsilon_r \mu_r > 1$ の範囲で表面電磁 モードを実際に求める。

3. 数値計算

一般的に、負の屈折率媒質の比誘電率と比透磁率は Drude モデルで与えられる。

$$\varepsilon_r(\omega) = \varepsilon_\infty - \frac{\omega_p}{\omega(\omega - i\nu_c)} \tag{8}$$

ここで、 ω_p はプラズマ周波数、 v_c は衝突周波数、 $\varepsilon_{\infty} = 1$ である。計算例として、 $\omega_p = 32\pi \times 10^9$ rad/s、 $v_c = 10^{-4}$ Hz を採用し、 $\varepsilon_r = \mu_r$ と仮定する。また、 本文の解析では、媒質中での電磁波のロスを考えない。 プラズマ周波数以下の電磁波周波数に対応する比誘電 率と比透磁率は負数になる。

誘電率と透磁率の Drude 式(8)を分散方程式(6)に代入 し、数値計算の手法を用いて方程式を解くと、表面電磁 モードの分散関係を求めることができる。この計算では、 媒質平板の厚みを2mmとした。その時の負の屈折率を 有する媒質平板に局在する表面電磁波の分散関係を図 3に示す。そこには二つの分散カーブがあり、それぞれ 基本モードと二番目の高次モードを表す。比較のために、 正の屈折率媒質(PIM)($\varepsilon_r = 10, \mu_r = 1$)平板に対しても 計算を行った。基本モードの分散曲線を同図に赤い曲線 で示した。また、電子ビームとの相互作用を表現するた めに、100 keV エネルギーの電子ビームに対する、電子 の速度 $v_b \ge \omega = kv_b$ の関係を図3の青い線で示す。こ の直線と各分散曲線との交点が、電子ビームと電磁モー ドとの同期点を表す。同期点では、電子の速度が電磁波 の位相速度と等しく、電子ビームと電磁波との相互作用 が可能であることを意味する。そのため、交点或いは同 期点に対する周波数が一定のエネルギーの電子ビーム による励起された電磁波の周波数と考えられる。

図3 表面電磁モードの分散関係曲線

4. まとめ

負の屈折率媒質平板による表面電磁モードの存在条 件に関する解析を行った。表面電磁波の分散方程式を導 出し、数値計算の手法を用いて分散方程式を解き、分散 関係を求めた。それにより、完全導体基板を使うことで、 従来の誘電率と透磁率への制限を大幅に緩和できるこ とが明らかになり、 $\varepsilon_r \mu_r > 1$ の範囲に表面電磁モード が存在できることが明らかとなった。負の屈折率媒質を 用いた小型かつ大出力チェレンコフ型電磁波放射源の 開発¹²⁾が可能になると考えられる。

本研究の一部は科研費(24560057)と光科学技術振興 財団からの研究助成により実施した。

参考文献

- 1) V.G. Veselago: Sov. Phys. Usp., 10, 509-514, 1968.
- 2) R.A.Shelby, D.R.Smith, S.Schultz: Science, 292, 77-79, 2001.
- H.-T Chen, W.J. Padilla, J.M.O. Zide, A.C. Gossard, and A.J. Taylor: Nature, 444, 597-600, 2006.
- K. Tkano, T. Kawabata, C. Hsieh, K. Aklyama, F. Miyamaru, Y. Abe, Y.Tokuda, R. Pan, C. Pan, and M. Hangyo: Appl. Phys. Express, 3, 016701, 2010.
- D. R. Smith, W. Padilla, D. C. Vier, S.C. Nemat-Nasser, and S. Schultz: Phys. Rev. Lett., 84,4184-4187, 2000.
- C.G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, M. Tanielian: Phys. Rev. Lett., 90, 107401, 2003.
- A. A. Houck, J. B. Brock, and I. L. Chuang: Phys. Rev. Lett., 90, 137401, 2003.
- 8) H.L. Andrews and C. A. Brau: J. Appl. Phys., 101, 104904, 2007.
- D. Li, G. Huo, K. Imasaki, M. Asakawa: Nucl. Instr. Meth. Phys., A606, 689-692, 2009.
- 10) I.J. Owens and J. H. Brownell: J. Appl. Phys, 97, 104915, 2005.
- A.V.Kats, Sergey Savel'ev, V.A.Yampol'skii and Franco Nori: Phys. Rev. Lett., 98, 073901, 2007.
- D. Li, M. Hangyo, Z. Yang, M.R. Asakawa, S. Miyamoto, Y. Tsunawaki, K. Takano, K. Imasaki: Nuclear Instruments and Methods in Physics Research, A 637, 135-137, 2011.

CFRP のレーザー微細加工

レーザープロセス研究チーム

藤田雅之、染川智弘、大河弘志¹、大塚昌孝¹、前田佳伸¹ ¹近畿大学理工学部

1. はじめに

次世代エンジニアリング材料として注目されている CFRP(Carbon Fiber Reinforced Plastic:炭素繊維強化樹脂 複合材料)に対するレーザー加工の適用可能性について 研究を進めている^{1,2)}。CFRP は炭素繊維を積層し樹脂で 固めた構造であるため、樹脂が何らかのダメージを受け ると層間剥離が生じて強度が低下してしまう恐れがあ る。基本的に熱加工であるレーザー加工の場合は、炭素 繊維の昇華温度よりも一桁低い融点をもつ樹脂が先に 溶融し、炭素繊維と樹脂の間に隙間が生じたり炭素繊維 が露出してしまうことが問題となっている。樹脂が熱的 ダメージを受けた領域はHAZ(Heat Affected Zone:熱 影響領域)と呼ばれ、10 ~ 100 µm 以下に抑制するこ とが求められている。

我々は、超短パルスレーザーを用いることで CFRP の レーザー加工に伴う HAZ を最小限に抑制できることを 示してきた²。しかし、市販の超短パルスレーザーの出 力は一般的に数 W レベルであり、輸送機器等の構造材 として用いられる厚さ数 mm の CFRP を切断するのに 要する加工時間は産業応用とはほど遠いものであった。 そこで、超短パルスレーザーの高品質な加工を活用する ために、厚さ数 100 μm の極薄 CFRP の微細加工に着目 することとした。炭素繊維は「軽くて丈夫」という特徴 以外にも、数々の熱的・機械的な優れた特性を有してい る。

炭素繊維は、ポリアクリルニトリルを炭素化して得ら れる PAN 系とコールタールなどを原料として得られる PITCH 系に大別される³⁾。PAN 系炭素繊維は高強度で しなり易いという特徴から、自動車車体、航空機、ゴル フシャフト、テニスラケット等に広く使われている。一 方で、PITCH 系は繊維軸方向に高度に配向した黒鉛結 晶であり、熱伝導率が高く放熱部材として利用可能であ る。また、熱膨張係数は一般的な金属材料に対して2桁低く、ほとんどゼロである。さらに、優れた電磁波シールド特性を有しており、金属部材の代替に適した樹脂材料であると考えられる。

このような炭素繊維の特性を活かすことで、"軽量 化"は二次的な効果と考えてもいいぐらいのメリットが 得られる用途が期待される。炭素繊維の直径は7~ 10µm で、髪の毛の約 1/10 の太さであり、5~10 層を 積層しても厚さ100µm程度である。10層も積めばCFRP としての特性が充分発揮されることが期待される。前述 のような特徴を活かせば、極薄のCFRP は精密な微細構 造体を形成するのに適している材料と考えられる。 CFRP は金属とは異なり、フォトリソ、化学エッチング による微細加工が困難であり、パルスレーザーによる直 接描画、精密微細加工が重要となる。

2. 超短パルスレーザーによる切断実験

CFRP のレーザー加工における PAN 系と PITCH 系の 比較を行うために、波長 266 nm、パルス幅 35 ps のレー ザーを用いて CFRP の切断実験を行った。レーザーパワ ーを 0.5 ~ 2 W、繰り返し周波数を 25 ~ 100 kHz と変 化させ、厚さ 250 µm の CFRP に焦点距離 100 mm のレ ンズを用いてレーザー光を集光照射した。CFRP 試料は 図 1 に示す様に直進ステージまたは高速モーター上に 固定した。直進ステージを用いた場合は 10~40 mm/s

図2 PAN系クロスCFRPを低速で直線加工した際に観察される熱影響層(矢印部分)のSEM像。(a)炭素繊維と垂直に加工、(b)炭素繊維と平行に加工

の掃引速度で試料を直線加工し、高速モーターを用いた 場合は1500 mm/sの掃引速度で試料を円形に加工した。 円形加工の半径は10 mm であった。用いた高速モータ ーの回転部分は中空シャフト形状をしており、試料を貫 通切断した後のレーザー光はそのままモーターを通過 するようになっている。CFRP 試料の形態としては、 PAN 系クロス、PAN 系一方向、PITCH 系一方向の3種 類を用いて実験を行った。

2.1 低速直線加工における PAN 系 CFRP の熱影響領域

図2にPAN 系クロス CFRP を低速で直線加工した際 に観察される熱影響領域(HAZ: Heat Affected Zone)の SEM 像(矢印部分)を示す。ここでは、CFRP の樹脂 が蒸発し炭素繊維が露出した領域を HAZ として測定し た。

図3にレーザーパワーを1Wに固定してPAN系炭素 繊維と"平行に"直線加工した場合の繊維露出幅の掃引 速度依存性を示す。掃引速度に対する依存性は見られな いが、繰り返し周波数が高いほど熱影響領域が拡大する 傾向がある。これは、繰り返し周波数が高いほど照射ス ポットの重なりが大きくなり、局所的な加熱が起きてい るためであると考えられる。また、繰り返し周波数が高 いほどパルスエネルギーが小さくなり、炭素繊維の加工 しきい値以下のエネルギー成分が増えていることも考 えられる。

図4にレーザーパワーを1Wに固定してPAN系炭素 繊維と"垂直に"直線加工した場合の繊維露出幅の掃引 速度依存性を示す。図3と異なり、掃引速度に対する依

図3 PAN 系炭素繊維と平行に直線加工した場合の繊 維露出幅の掃引速度依存性。

存性が繰り返し周波数が高い時に顕著に現れている。掃 引速度が遅いほど熱影響領域が大きくなっており、炭素 繊維に対して垂直に加工する場合は局所的な加熱の影 響が著しいことが分かる。PAN 系炭素繊維の熱伝導率 は鉄と同程度であり繊維内での熱伝導は比較的良好で あるが、隣接する繊維間の熱伝導は極めて低い。炭素繊 維と平行に直線加工する場合は繊維に沿って熱影響領 域が現れても、そこはレーザー加工によって除去されて しまう。一方、炭素繊維と垂直に直線加工する場合は、 繊維に沿った熱影響領域がそのまま残ってしまうこと になる。この傾向はパルスエネルギーが小さいほど、又 はピーク強度が低いほど顕著に現れている。

図 5 PAN 系 CFRP を炭素繊維に対して垂直に加工した試料の SEM 像。繰り返し周波数は 50kHz でレーザーパ ワーと掃引速度はそれぞれ、(a) 0.5 W、1500 mm/s、(b) 2 W、1500 mm/s、(c) 2 W、40 mm/s

図6 PITCH 系 CFRP を炭素繊維に対して垂直に加工した試料の SEM 像。画面右側が CFRP 試料。実験条件は 図5 と同じ

2.2 掃引速度に対する PAN 系と PITCH 系の比較

図5にPAN系CFRPを炭素繊維に対して垂直に加工 した試料のSEM像を示す。繰り返し周波数は50kHz でレーザーパワーと掃引速度はそれぞれ、(a)0.5W、 1500mm/s、(b)2W、1500mm/s、(c)2W、40mm/sであ った。図5(a)と(b)を比較すると、レーザーパワーが4倍 異なるにもかかわらず1500mm/sで高速掃引した場合 は顕著な熱影響領域が見られない。一方、図5(b)と(c) を比較すると、同じ照射パワーでも40mm/sの低速掃引 では炭素繊維が露出しており、熱影響領域が確認できる。 同様の実験をPITCH系炭素繊維に対して行った結果を 図6に示す。PITCH系CFRPの場合は、低速加工にお いても炭素繊維に熱伝導率が数倍高いために、局所 的に熱が溜まることなく加工が行われていることが分 かる。

2.3 高速円形加工における加工効率

前節においては PAN 系、PITCH 系にかかわらず、高

速掃引することで熱影響領域が無視できるレーザー加 工を実現できることを示した。高速掃引における加工部 周辺の状態はPAN系、PITCH系ともに差が見られない。 炭素繊維の熱伝導率の違いは加工にどのような影響を 与えているのか? 図7に厚さ250 µmのCFRP シート から直径20 mmの円板を切り抜くのに要する時間をレ ーザー出力に対してプロットした。図中〔〕で示した データを除くと概ね、加工時間とレーザー出力の間には

図8 高速円形加工において直径20mmの円板を切り抜 くのに要したレーザーエネルギーの比較

反比例の関係がある。〔〕付きのデータは繰り返し周 波数 100 kHz、パルスエネルギー5 μ J の時に得られた値 であり、加工しきい値近傍の照射条件であったため他の データ(パルスエネルギー10 ~ 40 μ J)よりも加工時 間が多くなっている。

図8に高速円形加工において直径20 mmの円板を切り抜くのに要したレーザーエネルギーの比較を示す。図7の(加工時間×レーザー出力)をパルスエネルギー毎にプロットした。図8では図7中の〔〕付きのデータは除外している。図7で概ね反比例の関係が示されたことに対応して、(加工時間×レーザー出力)のパルスエネルギーに対する著しい依存性は見られない。消費エネルギーの平均値はPAN系で60J、PITCH系で180Jであった。PITCH系はPAN系よりも約3倍のエネルギーを要して加工が行われたことになる。これは、PITCH系 炭素繊維の高い熱伝導率によるものと考えられる。

加工試料上で測定した切り幅 15 µm と切り抜かれた 円板の直径 20 mm から、アブレーションされた体積は 0.24 mm³ と見積もられる。レーザーパワー1 W 当たりの アブレーションレートは消費エネルギーの平均値から 計算すると、PAN 系で0.24、PITCH 系で0.08 mm³/min./W となる。独シュツットガルト大学で行われた実験ではパ ルス幅 8ps、繰り返し 200 kHz のレーザーを用いて、波 長 (1064 nm、532 nm、355 nm) に依存せず 1 mm³/min./W という値が報告されている⁴⁾。我々の実験で用いたレー ザーのパルス幅は 35 ps であり、レーザー照射後約 10 ps で発生するプラズマの加熱に余分なエネルギーが費や されたために加工効率が低下したと推察される。

3. まとめ

パルス幅 35 ps、波長 266 nm のレーザーを用いて厚さ 250 µm の CFRP をレーザー加工する実験を行った。PAN 系と PITCH 系の炭素繊維を用いた CFRP の加工特性の 比較を行い、(1) PAN 系 CFRP は低速掃引において熱 影響領域が発生しやすい、(2) 高速掃引においては PAN 系、PITCH 系共に熱影響領域が無視できる加工が 可能である、(3) PITCH 系 CFRP は熱伝導率が高いた めに熱影響は発生しにくいが、PAN 系よりも多くのエ ネルギーを加工に要する、ことが分かった。加工に要す るエネルギーと熱影響の受けやすさはトレードオフの 関係にあると言える。

謝辞

本研究はスペクトロニクス社のご厚意により開発中 のレーザーを借用して実施したものであり、関係者各位 に感謝致します。

参考文献

 1)藤田 雅之,染川 智弘:レーザ加工学会誌,20,.34-38,2013.
 2)藤田 雅之,染川 智弘,尾崎 巧,吉田 実,宮永 憲明:レ ーザー研究,39,701-705,2011.

- 3)炭素繊維協会第 24 回複合材料セミナー資料、 http://www.carbonfiber.gr.jp/tech/seminar.html.
- A. Wolynskia, T. Herrmanna, P. Muchab, H. Halouic, J. L' huillier, Physics Procedia, 12, 292-301, 2011.

Filled-aperture coherent summation technique for multiple high average power laser beams

Laser Process Research Team

Haik Chosrowjan, Seiji Taniguchi, Masayuki Fujita, and Yasukazu Izawa

1. Introduction

Powerful lasers with high brightness and good beam quality are increasingly required for many applications in material processing, medicine, environment monitoring, etc. To reach higher intensities, one needs to increase the output power of the laser beam and at the same time keep or improve the beam quality.

Within a "High-power laser development for efficient material processing applications" project of NEDO (New Energy and Industrial Technology Development Organization of Japan), we are developing single mode, 400 ps - 10 ns adjustable pulse duration, high repetition rate (500 kHz - 1 MHz), tunable (1040 nm - 1060 nm) high average power (150 W - 200 W) laser amplifier units based on Yb-doped LMA (large mode area) PCFs (photonic crystal fibers). For final design of a desired laser system with 1.5 kW average output power, beam combining concept seems to be one of the viable choices. The motivation behind it is simple; to achieve higher power, intensity and brightness than is obtainable from a single laser source. A number of coherent, incoherent and spectral beam combining techniques have been already proposed¹). Theoretically, for far-field on axis applications, TA (tiled-aperture, side by side alignment of the beams) CBC (coherent beam combining) is better suited, because in contrast to FA (filled-aperture) beam combining techniques, in this case the central lobe intensity I is proportional to $\sim N^2$, where N is the number of amplified beam channels. However, in practice this method is often impaired by an important factor f- aperture fill-factor, which is in most practical cases remarkably smaller than unity. As shown in Fig. 1 (a), the appearance of side lobes in far-field (beam focus) due to f < 1makes TA designs disadvantageous for precision cutting and

drilling applications on CFRP (carbon fiber reinforced plastics) or applications in MEMS (micro-electro-mechanical systems). For such cases, FA CBC designs are preferred, because FA CBC is side lobe free (Fig. 1 (b), bottom), hence better suited for the precision material processing. Additionally, using side lobe free beam profiles, SH (second harmonics) and TH (third harmonics) can be also efficiently generated, which are indispensable for some specific material processing applications.

Basically, there are two modes for FA CBC: polarization addition and DOE (diffractive optical element) based combinations. Several FA CBC implementations have been already proposed and realized^{2,3)}. In polarization combination technique, for addition of each 2 beam pairs, 2 detectors, a polarizer cube and a $\lambda/2$ wave-plate are required, making the scaling of the number of beams quite challenging. In single DOE based FA CBC technique, the requirements on DOE are very strict (diffraction limited), making DOE fabrication

Fig. 1 (From top to bottom) Near-field, far-field and (x, 0) intensity distribution profiles for (a) tiled- and (b) filled-aperture CBC cases. challenging and very costly. Moreover, in single DOE based CBC the number of beams is fixed, i.e. to increase the number of the beams by just one beam, one needs to manufacture a new DOE suitable for that number. Hence, simple scaling of the beams number in CBC based on a single DOE is impossible. Finally, when multiple DOEs (50/50 beam splitters) have been used, multiple detectors have been often employed, like in the case of polarization addition. Here we propose a single-detector, FA CBC geometry based on half mirrors design and use of simple "climbing hill" or SPGD (stochastic parallel gradient descent) algorithms for phase locking. As a proof of a principle, it is demonstrated for four low power beams in CW regime. In the final laser system design, 3 CBC units combining four beams each (~600 W total power per unit) at slightly different wavelengths has been planned. In the final stage, outputs of those three CBC units will be combined by SBC (spectral beam combination) technique, eventually delivering more than 1.5 kW average output power beam for material processing applications.

2. Experimental

Laser beam from a master oscillator (1064 nm, $d \sim 2$ mm) was split into four channels and aligned again in FA design as shown in Fig. 2. All four beams imitate "amplified" beams to be combined coherently. The "amplification process" in each channel will induce independent time variations of beam phases due to thermal, mechanical and non-linear optical effects. To compensate and lock the phases between the beams, a single photo-detector (PD) was placed in the path of the diagnostics (<< 1%) beam after the last beam splitter. The signal captured by the fast PD was used as a feedback control signal to piezo-actuators (PM1 - PM3) located on the paths of three beams. The fourth channel was used as a reference beam and its phase was not controlled. The PD signal was maximized by a feedback loop to PMs using simple "climbing hill" algorithms. In contrast to TA CBC4), no aperture in front of the PD is required for the presented FA CBC method.

Fig. 2 Schematic diagram for 4 beam FA CBC apparatus.
PM1 - PM3 - phase modulators, BS - beam splitters, PD
- photo-detector.

We have tested two algorithms; one is based on discrete Bernoulli distribution with zero mean value dithering SPGD, and another is based on guasi-two dimensional diagonal climbing hill logic on the power-phase map. Here we will describe only the Bernoulli distribution based algorithm. Briefly, Bernoulli distribution is a discrete probability distribution which takes value 1 with success probability and value 0 with failure probability. At an arbitrary starting point, we supply small voltage with the same amplitude ($|\delta V_i|$) to all three piezo-actuators (PM1-PM3, Fig. 2). The voltage sign to each PM, however, is applied in such a way, that the mean value of the applied voltage to each PM over many iteration steps remains zero. For the three PMs (N=3), there are eight possible combinations $(2^N = 8)$ and four possible dithering pairs ensuring zero mean values. After the first dithering step, the PD signals for positive (P_+) and negative (P_-) movement directions are captured. For the next step, the control algorithm

uses the following recurrent formulae (1) and makes a guess for the magnitude and direction of the "Bernoulli voltages" to be applied to each PM.

$$V_i = V_{i,n-1} + \gamma * \delta V_i * (P_+ - P_-)$$
(1)

Here, $V_{i,n}$ is the "Bernoulli voltage" applied to the ith PM at the nth iteration. γ is the gain constant, δV_i is the dithering voltage for the ith PM and P_+ and P_- are the PD readings for positive and negative movement directions, respectively. In this way the PD signal is maximized and the $(P_+ - P_-)$ difference is minimized. Eventually, the system converges and reaches the maximum PD value. It is kept there as long as the algorithm is running. The whole described process continues indefinitely. As a result, the phases of all beams are locked and the output formed by them behaves as a single coherent beam. Figure 3

Fig. 3 4 beams CBC unit's phase locking convergence, *RMS* deviation and stability (**a**), and corresponding bandwidth (Fourier transform) for the construction noise around the laboratory (**b**). In each graph the red and black lines show the cases when the CBC system is "off" and "on".

shows an example of the phase locking convergence, stability and bandwidth for four beams CBC in CW regime. Typical values for piston phase *RMS* deviation and phase locking convergence time were estimated to be $\sim\lambda/100$ and ~0.1 s, respectively. The same CBC scheme and algorithms can be used also for high repetition rate (> 500 kHz), sub-ns or longer duration pulse beams. This can be achieved by adjusting temporal overlaps of the pulses in all four beams and by simply keeping the bandwidth ($\Delta\omega$) of the single photo-detector well below the pulse repetition rate, averaging the captured signal over many pulses and maximizing it by SPGD algorithms.

The CBC efficiency *S* (Strehl ratio) for the present system was estimated to be ~0.9 (Fig. 4). The RMS deviation of the piston phase was roughly estimated to be $\sim \lambda/100$, which accounts for less than 1% of the CBC efficiency drop. The remaining drop was caused by the power imbalance between individual beams, divergence, pointing, overlap mismatches and wavefront distortions of the individual beams. Several of these factors causing the efficiency drop in binary-tree FA CBC have been analyzed theoretically. As an example, two typical results describing the efficiency drop due to the beam splitter imbalance and wavefront deformation (small, non-correlated wavefront *RMS* deviation (σ) case) are

Fig. 4 (bottom to top) Far-field intensity distribution profiles on a (x, 0) horizontal axis shown for total power loss (gray), single beam (black), coherent combination (red) and maximum possible output (blue), respectively.

presented in Fig. 5. The contribution to the efficiency drop from the BS imbalance, as seen from Fig. 5 (a), is quite manageable. For example, even for 70% transmission (30% reflection) values for all BSs, the Strehl ratio can be kept greater than 0.9, if no other efficiency drop sources exist. Similarly, calculations confirm that contributions to the efficiency drop from the power imbalances, spot-size mismatches and lateral shifts of individual beams are not critical (not shown here). However, as shown in Fig. 5 (b), the steepest drop in CBC efficiency is expected from the wave-front phase deformations of the individual beams. Namely, to achieve 0.9 or higher Strehl ratio, one needs to keep the σ values of individual beams at $\lambda/20$ or smaller. It is also important to note, that for high average power CBC case, except phase-front deformations caused by amplifiers, all optical components such as BSs and mirrors could also introduce wave-front distortions, further reducing the combining efficiency⁵). This, however, is not a CBC-method specific efficiency drop, but caused by the FA CBC nature itself, which can be essentially considered as a "spatial coherence filter".

Fig. 5 Analysis of beam combining efficiency *S* (Strehl ratio); (a) *No wavefront distortions*; *S* dependence on the beam splitters transmission (or reflection), (b) *No power imbalance*; *S* dependence on non-correlated wavefront *RMS* deviation σ.

3. Conclusions

For industrial applications of high average power laser beams in precision machining like cutting/drilling on CFRP materials, a simple and cost effective CBC scheme using single-detector, filled-aperture coherent beam combining technique for CW and high repetition rate ns pulse laser beams has been proposed and demonstrated. Proof of principle experiments and efficiency calculations have been performed for four beams coherent combination. The combining efficiency for the present laser system was experimentally estimated to be ~0.9. The proposed CBC technique can accommodate kW level average power beams, be integrated into various MOPA architectures and perform with high speed and accuracy. The phase RMS deviation (combining sensitivity) for the present laser and experimental set-up was estimated to be ~ λ /100. Due to the pieso-actuator bandwidth of ~1 kHz, at present we can reach only ~100 Hz phase locking bandwidth at best. In real amplifier systems the phase drift will be faster, so using piezo-actuators is not practical for single diode CBC and faster phase shifters like electro-optical modulator (EOM) units have to be employed.

References

- T. Y. Fan: IEEE Journal of Selected Topics in Quantum Electronics, 11, 567-577, 2005.
- A. Klenke, S. Breitkopf, M. Kienel, T. Gottschall, T. Eidam, S. Hädrich, J. Rothhardt, J. Limpert, and A. Tünnermann: Opt. Lett., 38, 2283-2285, 2013.
- E. C. Cheung, J. G. Ho, G. D. Goodno, R. R. Rice, J. Rothenberg,
 P. Thielen, M. Weber, and M. Wickham: Opt. Lett. 33, 354-356, 2008.
- T. Weyrauch, M. A. Vorontsov, G. W. Garhart, L. A. Beresnev, A. P. Rostov, E. E. Polnau, and J. J. Liu: Opt. Lett. 36, 4455-4457, 2011.
- W. Liang, N. Satyan, F. Aflatouni, A. Yariv, A. Kewitsch, G. Rakuljic, and H. Hashemi: J. Opt. Soc. Am. 24, 2930-2939, 2007.

低温冷却 Yb:YAG TRAM レーザーの時間変化計測

レーザープロセス研究チーム

櫻井俊光、ハイク コスロービアン、谷口誠治、河仲準二¹、宮永憲明¹、石井伸也²、 藤田雅之、井澤靖和

1大阪大学レーザーエネルギー学研究センター

2三菱重工業株式会社

1. はじめに

固体レーザー開発における重要な課題の一つは、レ ーザー媒質の冷却技術である。Yb:YAG は、Nd:YAG に比べて量子欠損が小さく、本質的に、高効率、低熱 損失が期待できる固体レーザー材料といえる。さらに、 低温冷却すれば、低い励起入力で大きな増幅利得が得 られ、熱伝導特性が向上するため、レーザー媒質の温 度上昇を抑えながら、より高い効率と高ビーム品質が 可能となる。当研究所では、Yb:YAG を用いた全反射 アクティブミラー方式のTRAM (Total Reflection <u>A</u>ctive <u>Mirror</u>) レーザー¹⁾ を提案し、高出力レーザーの開発 を行ってきた²⁶⁾。TRAM ではYb:YAG を直接液体窒素 で冷却する方式を採用している。

一方で、Yb:YAG から放出される蛍光スペクトルの 形状が温度に依存して変化することを利用して、LD 励 起された Yb:YAG の温度を評価する手法を開発し、レ ーザー媒質内の空間温度分布の測定を行うとともに、 温度解析結果との比較を行ってきた⁷⁰。昨年度はこの 手法を拡張し、温度の時間変化を測定できるようにス ペクトル計測系を改良した。本稿では Yb:YAG 温度の 時間変化計測結果について紹介する。

2. 温度評価の原理と実験方法

Yb:YAG 蛍光スペクトルの温度依存性を図1に示す。 低温では数本のピークが観測されるが、温度上昇とと もにピーク強度が減少し、なだらかなスペクトル形状 となる。図2は、1022 nm のピークと 1027 nm の谷の位 置での蛍光強度比の温度依存性である。この比を測定 することにより Yb:YAG の動作温度を評価できること がわかる。

温度評価のための蛍光スペクトル計測実験配位を図

3に示す。最大出力3kWのスタックLD光をTRAM(9.8

図1 Yb:YAGの蛍光スペクトルの温度依存性

図2 蛍光スペクトルの強度比(1022 nm/1027 nm) と温度の関係

at% Yb:YAG, 0.6 mm 厚) に照射した。Yb:YAG 励起面 でのLD 光のサイズは 10 mm×11 mm である。励起領 域中心部からの蛍光をファイバで導き分光器 (Oceans Opt. HR4000、波長帯域:920-1080 nm、分解能:0.2 nm) に入射した。

分光器付属のソフトウェアを利用して蛍光スペクトル の時間変化を抽出して保存した。実際の計測では、10 ms毎に計測されたスペクトルの3データの平均値を取 出し保存できるように設定した。スペクトルデータの 中から1022 nm と1027 nmを中心とする波長幅0.05 nm 内のデータを平均して、2 波長における蛍光強度比を求 めるソフトを開発した。

3. Yb:YAG の温度上昇と液体窒素の沸騰評価

図4に、蛍光強度比から得られた Yb:YAG 温度の時 間変化を示す。励起用 LD パワーが 331 W 以下では、 Yb:YAG の温度は LD 照射後数秒から 10 秒以内に平衡 温度まで上昇し、その後ほぼ一定値を保っている。平 衡温度は LD パワーの増大とともに 95 K 程度まで上昇 している。一方、LD パワーが 331 W より大きい場合 では、温度 95 K 付近から 110 K 程度まで、急激に温度 が上昇する現象が見られる。LD パワーが大きくなるに

図5 液体窒素の沸騰曲線.A-C:核沸騰領域、 C-D:遷移沸騰領域、D-F: 膜沸騰領域

つれて、急激に温度が上昇するタイミングが早くなっている。

95K付近から見られる急激な温度上昇はYb:YAGを 冷却している液体窒素が核沸騰から膜沸騰へ移行する ことによるものと考えられる。図5は常圧時における液 体窒素の沸騰曲線である⁵。図5によると、サンプル壁

(今の場合はYb:YAG)と液体窒素の温度差が20Kま での間(図中のA点からC点の間)は、サンプル壁か ら液体窒素への熱流束は増大するが、C点を超えると熱 流束は急激に減少する。これは液体窒素が核沸騰から膜 沸騰へ移行することによる。C点を超えたところで Yb:YAGと液体窒素の界面に窒素ガスの膜が生成され て除熱効率が極端に低下することになる。

図6 蛍光スペクトルの積分値の時間変化。下部に 拡大図を示す。急激な温度上昇時刻を矢印 (↑)で示す(図4の時刻↓に対応している)

図 6 は測定した蛍光スペクトルデータを波長 1020 nmから1035 nmの領域で積分した蛍光強度の時間変化 である。図中矢印で示した時点で蛍光強度のわずかな 増大が見られる。この時点は、図 4 に示す温度の時間 変化で、急激な温度上昇が見られる時点と同じ時刻で ある。図 3 に示した実験配位でファイバは、Yb:YAG からファイバ方向に放出される蛍光成分と、液体窒素 側に放出され液体窒素と Yb:YAG 界面で反射され戻っ てくる蛍光成分を受光している。液体窒素が核沸騰か ら膜沸騰に移行すると液体窒素と Yb:YAG 界面での反 射率が変化する。

液体窒素の屈折率 n_{LN2} = 1.2、窒素ガス(N₂)の屈折 率 n_{N2} = 1.0003、YAGの屈折率 n_{YAG} = 1.82を考慮して Yb:YAG-LN₂界面の反射強度(I_R)は、入射の蛍光強 度を I_{total} として、

 $I_{R}^{LN2}/I_{total} = [(n_{YAG} - n_{LN2})/(n_{YAG} + n_{LN2})]^{2}$

で表現される。界面での屈折率変化により蛍光が反射 される $N_2 \ge LN_2$ における強度比(I_R^{N2}/I_R^{LN2})は0.085 /0.042 = 2.01 である。界面での反射を含めた全体の蛍光 強度比は(1+0.085)/(1+0.042) = 1.041 であり、窒素ガ スの場合は液体窒素の場合に比べて4.1%増加する。実 験で得られた増加率は4.4%であり、ほぼ計算値と一致 している。すなわち、急激な温度上昇後における Yb:YAG 界面では、液体(LN₂)ではなく気体(N_2)が 定常的に生成されている、液体窒素の胰沸騰状態にあ ると考えられる。

4. まとめ

レーザー媒質の排熱効率を向上させることが高平均 出力レーザー開発では重要な要素技術となる。そこで 本研究では、LD 励起時における Yb:YAG 温度の時間 変化を計測した。その結果、LD パワーの増大に伴い、 温度が 95K から 110K 程度まで急激に上昇する現象が 観測された。液体窒素の沸騰曲線と、急激な温度上昇 が観測される時点での蛍光強度の変化より、この急激 な温度上昇は液体窒素が核沸騰から膜沸騰へ移行する ことに起因していると推測される。膜沸騰状態では、 核沸騰状態よりも液体窒素の除熱特性が劣化するため、 より高出力化をめざすためには、大きな除熱効果が期 待できる冷却技術の開発が重要である。

参考文献

- 1) 古瀬ほか: ILT2010 年報, レーザー技術総合研究所, 2010.
- 2) 古瀬ほか: ILT2011年報, レーザー技術総合研究所, 2011.
- 3) 古瀬ほか: ILT2012 年報, レーザー技術総合研究所, 2012.
- 4) 古瀬ほか: ILT2013 年報, レーザー技術総合研究所, 2013.
- 5) H.Furuse et al.: Opt. Lett., **34**, 3439-3441, 2009.
- 6) H.Furuse et al.: Opt. Express, 20, 21739-21748, 2012.
- 7) 櫻井ほか: ILT2013 年報, レーザー技術総合研究所, 2013.
- 8) <u>http://frontier.ltm.kyoto-u.ac.jp/kouginote.html</u>

レーザーラマン分光法による変圧器油中フルフラール分析

レーザープロセス研究チーム

染川智弘、笠岡 誠¹、永野芳智¹、藤田雅之、井澤靖和 ¹かんでんエンジニアリング

1. はじめに

変圧器は電気を効率よく消費地に送電するために使 用される機器である。発電所で発電された電気は発電所 内の変圧器によって適切な電圧に昇圧して送電し、途中 の変電所や需要家側が設置している変圧器で所要の電 圧に降圧して利用されている。そのため、変圧器の状態 を監視し異常を早期に検出することは、電力設備の信頼 性を確保するのに不可欠である¹⁾。

変圧器では、電圧と電流の大きさを変換する鉄心と巻 線が絶縁油で満たされた油入変圧器が一般的であり、変 圧器全体の約 90%を占めている。運転中の変圧器内部 で異常が生じた際、異常箇所、異常内容に応じて絶縁油 または絶縁紙が分解され、特有のガス成分や、紙の主成 分であるセルロースが分解してフルフラールが発生す る。これらの物質は変圧器内の絶縁油に溶解するため、 この溶存成分を分析することにより、変圧器の内部異常 を診断することができる(図 1)。油中溶存成分の分析 には、一般的に絶縁油中のガスやフルフラールを抽出した後に、ガス・液体クロマトグラフィーにより測定するが、変圧器からの採油や対象物質の抽出など時間のかかる前処理工程を必要とする。そこで、油からガスを抽出することなく、レーザーを用いて直接油中の異常同定物質の分析手法を開発している。これまでに、絶縁油由来の評価物質であるアセチレンガスのラマン分光測定を行ってきた²³。アセチレンガスは放電により絶縁物が非常に高温にさらされた時に発生するため、変圧器の内部異常を診断するために重要な測定ガスとされ、本手法では0.37%の検出限界で油中のアセチレンの評価が可能であった。

本報告では、これまでの絶縁油が分解された際に出る ガス成分だけでなく、絶縁紙が分解させた際に生成する フルフラールに対して行ったラマン分光測定の結果を 報告する。フルフラールは油のラマンスペクトルと重複 することなく検出できることがわかった。

図1 変圧器の絶縁油溶存ガスを用いた従来の異常診断手法

2. 油溶存フルフラールのラマン分光計測

2.1 フルフラール

フルフラールは図 2 の挿入図に示すような構造式を しており、アルコール、エーテルなどの有機溶剤には易 溶であるが、水やアルカン類には微溶である。もともと は透明の液体であるが、水や空気によりすぐに酸化し茶 色に変色する。また、本実験で使用した絶縁油はかんで んエンジニアリング社製のサンオームオイル MU であ る。組成はナフテン系炭化水素が41.6%、パラフィン系 炭化水素が 50.0%、芳香族炭化水素が 8.4%である。ま た、少量のベンゾトリアゾール (BTA) を添加物として 含んでいる。

図2に新油とフルフラールの透過スペクトルを示す。 透過スペクトルの測定には、分光光度計U4100を用い た(石英セル:光路長10mm)。測定の波長分解能は1 nmである。挿入図には測定を行ったフルフラールを示 す。フルフラールは茶色であることからもわかるように 新油に比べて、青~緑領域で吸収が見られる。850 nm に見られるくぼみは分光光度計の光源を切り替える際 に見られたノイズである。

2.2 油溶存フルフラールのラマン分光実験

図3にラマン実験配置図を示す。試料油は挿入図に示 すようなΦ3 cm のバイアル瓶に入れた。使用したレー ザー光は波長 532 nm、パルス幅 10 ns、繰り返し 10 Hz、 パルスエネルギー100 mJ である。このレーザーを集光 せずにバイアル瓶に照射し、後方約 25°の位置からラ

図3 油溶存アセチレンのラマン分光実験配置図

マン散乱を測定している。集光光学系には 532 nm のエ ッジフィルターとノッチフィルターを挿入し、背景光と なる波長 532 nm のレイリー光をカットしている。ファ イバーで分光器まで導き、液体窒素冷却 CCD カメラで 測定した。CCD カメラの露光時間は 90 ms である。

図 4 に(a)油、(b)フルフラールのラマンスペクトルを 示す。500 回積算信号を5 回平均したスペクトルであり、 波長分解能は 0.27 nm である。(a)油では、~1450 cm⁻¹ に CH₃-CH₂の変角モードの大きな信号が見られ、~1302, 1350 cm⁻¹に見られる二つの信号は C-H のねじれモード と考えられる。また、~1610 cm⁻¹ に見られる信号は芳 香族系の C=C の伸縮モードであり、~2725 cm⁻¹は C-H の伸縮モードと考えられる。

図2からフルフラールは波長 532 nm に吸収があるた めに蛍光が出ることが予想されたが、フルフラールは波 長 532 nm で蛍光を発しないことがわかる。 (b)フルフ ラールでは~1372 cm⁻¹に H-C-C/O の変角モードが見ら れ、~1398 cm⁻¹が C-C の伸縮モードである。また、~ 1478, ~1573 cm⁻¹に見られるラマン信号は C=C の伸縮 モード、~1675 cm⁻¹に見られるラマン信号が C=O の伸 縮モードである⁴。したがって、(a)油のラマンスペクト ルと比較すると、フルフラールは油由来の信号とは識別 できる~1675 cm⁻¹のラマン信号を持つことがわかる。

次に油にフルフラールを溶存させたモデル試料のラ マンスペクトルを図 5 に示す。スペクトルはそれぞれ 3000 回積算信号 (露光時間:90 ms) の5 回平均をとり、 波長分解能は0.23 nm である。フルフラール濃度は液体 クロマトグラフィーで別途測定し、104, 251, 415, 900, 1106ppm である。

図4 (a)油、(b)フルフラールのラマンスペクトル

図5 油溶存フルフラールのラマンスペクトル

上図が1100~2800 cm⁻¹の広帯域なスペクトルであり、 下図がフルフラールのラマン信号が見られる1500~ 1800 cm⁻¹の拡大図である。~1707 cm-1 にフルフラール の C=O の伸縮モードが確認でき、油由来のラマン信号 と区別して測定できることがわかる。ここで、~1707 cm⁻¹に見られるフルフラールの信号は図4に示した信号 とスペクトル形状が異なっていることがわかる。このラ マン信号は2本のピークが重なるダブレットであり、フ ルフラールと溶媒との濃度の関係によってフルフラー ルの異性体の割合が変化し2本のピーク高さが変化し ていると考えられる⁵。

2.3 検出限界の検討

ラマン分光では、測定時のレーザー強度のふらつきや、 光路の状態によってラマン信号強度が変化するために、 定量評価には同時に取得した濃度が一定である他のラ マン信号強度との比を用いる。フルフラールの検出限界 の検討には図5に示した油由来の~1612 cm⁻¹のラマン 信号とフルフラール(~1707 cm⁻¹)のラマン信号強度と のラマン信号強度比を利用した。

図6にフルフラール(~1707cm⁻¹)と油(~1612cm⁻¹) のラマン信号強度比と濃度の関係を示す。測定の誤差は 5回測定の平均値からの誤差で評価しているが、シンボ ルに隠れる程度である。0ppmの1675~1720 cm⁻¹の直線 近似からのずれの標準偏差 σ の3 σ で検出限界を定義 すると14.4ppm(0.00144%)であることがわかった。

フルフラールを指標とした絶縁紙の劣化診断は注意 レベルで1.5ppm、危険レベルで15 ppm(0.0015%)で ある⁶。したがって、本手法では危険レベルでのフルフ ラールの測定は可能ではあるが、より検出感度の向上が 必要である。

3. まとめ

変圧器の異常診断をその場で簡易に行う手法として レーザーラマン分光法を用いた油溶存物質の検出手法 の開発を行っている。これまでに波長 532 nm のパルス レーザーを用いて絶縁油の分解生成物であるアセチレ ンの油溶存状態でのラマン信号の検出に成功しており、 本報告では絶縁紙が分解した際に生じるフルフラール の油溶存状態での検出に成功した。

本手法を利用すれば、レーザーを油に照射するだけで、 その場で絶縁油・紙由来の変圧器の異常を診断すること が可能となる。現状のフルフラールの検出限界は 14.4ppm と危険レベルでの検知は可能であるが、今後は さらに測定システムの検出感度を向上し、その場での実 機絶縁油測定に向けた研究を行う予定である。

参考文献

- 1) 石油学会編: 電気絶縁油ハンドブック, 講談社, 1987.
- T. Somekawa, M. Kasaoka, F. Kawachi, Y. Nagano, M. Fujita, and Y. Izawa: Opt. Lett., 38, 1086-1088, 2013.
- 3) 染川智弘、笠岡誠、河内二三夫、永野芳智、藤田雅之、井澤 靖和:ILT 年報、レーザー技術総合研究所、2013.
- T. Kim, R. S. Assary, L. A. Curtiss, C. L. Marshall, P. C. Stair: J. Raman Spectrosc., 42, 2069-2076, 2011.
- 5) G. Allen and H. J. Bernstain: Can. J. Chem., **33**, 1055-1061, 1955.
- S. Okabe, G. Ueta, T. Tsuboi: IEEE Trans. Dielectr. Insul., 20, 346-355, 2012.

レーザーを用いたコンクリート埋め込みボルトの 健全性評価技術の開発

レーザー計測研究チーム

島田義則、コチャエフ オレグ、御崎哲一¹、高橋康将¹、瀧浪秀元¹ ¹西日本旅客鉄道株式会社

1. はじめに

近年、高度成長期に建設された構造物の老朽 化が大きな社会問題となっている。鉄道ではトン ネルの覆エコンクリートが剥落して新幹線のパ ンタグラフや屋根を損傷した事故や、高速道路で は吊り天井が崩落した事故などが起こっており、 構造物の健全性を効率よく診断できる技術の開 発が急務である。

現在、健全性の評価には打音検査法(打音法) ¹⁾が主に用いられている。ハンマーで構造物表面 をたたき、健全部と劣化部の音スペクトルの違い から劣化部を検出するものである。この手法には、 人的および時間的な面でコストがかかることや 客観的データに乏しいこと、更に前の検査と比較 した劣化進行状況(経年劣化)が把握困難である ことなどの問題がある。このため、低コスト、高 速、高精度で検査できる新しい検査手法の開発が 強く求められている。

打音法に代わる検査方法として、レーザーを 用いた方法(レーザー法)がある。パルスレーザ ーをコンクリート表面に照射して振動を誘起し、 表面振動をレーザー干渉計で計測して欠陥など を検出する手法で、遠隔かつ非接触で検査が行え、 他の方式に比べて検査箇所への高速移動が可能 であることや、コンクリート曲面の計測が容易に 行えるなどの利点がある。当研究グループではレ ーザー法の実用化を目指して、検査技術に関する 基礎実験を行い、装置の開発を進めてきた¹⁻²⁾。こ れまでに、この技術を山陽新幹線トンネルに適用 して、欠陥検出性能を有することを確認した。ま た、検出システムの小型化に取り組み、新幹線ト ンネルの中央通路を走行してトンネル覆工コン クリート検査を行える装置の開発を行った³⁾。 レーザー法はトンネル覆工コンクリート検査 のみならず、トンネル内の下束や照明器具、配 管などを固定するためのケミカルアンカボルト の欠陥検査にも適用できる可能性がある。当研 究グループではレーザー法を用いてボルト等の 検査技術を確立するために基礎実験を開始した。

本稿ではボルトとコンクリートを接着させる ケミカル樹脂量を変化させたコンクリート供試 体を作製して欠陥ボルトの検出実験を行って、そ の可能性を確認した⁴。この結果について述べる。

2. ボルト埋め込みコンクリート供試体と計測結果

ケミカル樹脂注入量の違いや削孔が複数ある 欠陥ボルトなど3種類のコンクリート供試体を用 意した。3種類のボルトの違いを図1に示す。ボル ト径は24mmφ、削孔深さは360mmでボルトを底ま で挿入した。ボルト"1"は360mmの削孔全てにケ ミカル樹脂を注入した健全ボルトである。ボルト "2"はケミカル樹脂注入量をコンクリート面から 深さ30mmまでとした樹脂注入量不足欠陥ボルト である。ボルト"3"は斜め方向を含めて削孔が複 数本ある試験体で、垂直方向の削孔にのみボルト を挿入し、削孔全てにケミカル樹脂を注入してあ る。

はじめに、インパクトハンマーを用いて打撃力 を一定とした場合の各ボルトの振動スペクトル を計測した。図2中図にコンクリート供試体を上 から見た写真を示す。左側がボルト"3"、右側が

図1 ケミカル樹脂注入量やボルト埋め込み長さ等を変化させたコンクリート供試体

ボルト"2"である。ボルト上部の側面を打撃し、 ピエゾセンサーをボルトの頭に取り付けた。図2 上図にボルト"3"の時系列波形とその周波数スペ クトルを示す。ボルト"3"は健全ボルト"1"と同 じ1kHzの卓越振動数をもつ周波数スペクトルを 示した。この結果より、ボルト"1"とボルト"3" は周波数スペクトルでは区別がつかず削孔が複 数でも健全の応答を示すことが分かった。

また、図2下図にボルト"2"の時系列波形とその周波数スペクトルを示す。ボルト"2"は多くの

卓越振動数を持つ大きな揺れを示した。これより ケミカル樹脂注入量不足のボルトは健全ボルト と区別することが可能であることが分かった。

次にレーザーを用いた計測結果を示す。レーザ ー装置からコンクリート供試体までの距離は 7.5mである。図3中図はコンクリート供試体をレ ーザーが照射される正面から見た写真で、左側が ボルト"2"、右側がボルト"3"である。衝撃波励 起用レーザーには4Jの炭酸ガスレーザーを用いた。 レーザーをボルトに集光照射すると痕が残るた

図2 打音検査法を用いた計測結果

図3 レーザーを用いた計測結果

め、ビーム径を30mm程度に広げて照射した。左 側のボルト"2"にレーザー照射位置を示す。ボル ト先端から20mm下がったボルト側面に振動検出 用レーザーを照射した。また、その20mm下に衝 撃波励起用レーザーを照射した。

時系列波形と周波数スペクトル結果を図3 上 図および下図に示す。ボルト"3"は1kHzに卓越振 動数が現れ、ボルト"2"は4, 5.5, 7.5 kHz付近に 複数の卓越振動数が現れた。この結果は、レーザ ー法でも、打音検査法とよく似たスペクトルが現 れ、ケミカル樹脂注入量不足のボルトをS健全ボ ルトと区別することが可能であることを示して いると言える。

3. まとめ

レーザー法を用いてコンクリート埋め込みボル トのケミカル樹脂量注入不足欠陥を評価するこ とが可能であることを示した。

参考文献

- 1) 島田義則, オレグコチャエフ:電気学会論文誌 129-C, pp.1192-1197, (2009).
- 2) 島田義則, オレグコチャエフ: レーザー研究、**38**(10), pp.749-753, (2010).
- 3) Oleg Kotyaev: ILT 年報, レーザー技術総合研究所, 2013.
- 4) 島田義則,他:第69回土木学会年次学術講演会予稿集,Tobe published, (2014).

Two-beam probing interferometry: bridge inspection

Laser measurement team

Oleg Kotyaev and Yoshinori Shimada

1. Introduction

The Laser Measurement Team has gained wide experience in laser-based inspection of civil structures ^{1,2)}. Photorefractive laser interferometry has demonstrated very promising performance in the inspection of transportation tunnels ³). However, reliable inspection of bouncing structures, like transportation bridges, with the use of conventional or photorefractive laser interferometry is hardly possible. In this case, interferometry is strongly affected by instability of interference pattern, which caused by irregular bouncing of the inspected bridge, especially under heavy traffic conditions. If total displacement of the probing point on the bouncing bridge is about 3 mm and bouncing frequency is about 3 Hz, then the conventional interference pattern will be moving with phase change rate up to 100 kHz. It is quite difficult to recognize laser-initiated vibration in the range of several kilohertz over this background.

2. Two-beam probing idea

Interferometry based on two-beam probing of inspected area can reduce influence of bridge span bouncing on stability of interference pattern. In Fig. 1, the idea of two-beam probing is illustrated.

In this idea, interference occurs between two signals formed from scattered radiation of the two probe beams. If the distance between the two probing points is much less than size of bouncing bridge span then these points will be moving almost synchronously. As a result, interference pattern will be much more stable and measurement of laser-initiated vibration will be much easier.

Actual laser-based inspection system is supposed to be used for location of defects in the metal-concrete interface on the bottom side of the bridge span. Impact beam initiates vibration in metal plate and probe beams are used for vibration detection. Useful distance between the probe beams is found to be 5 - 20cm. It is much smaller than bridge span; and when the span is bouncing the movement of the two probing points is practically synchronous.

Probe-1 is used as a source of reference wave in interferometry. Probe-2 is located close to the point of impact. If there is no defect in the inspected area then laser impact will not initiate detectable vibration. However, if some defect exists in the position of impact beam and Probe-2 then vibration will be initiated just over the defect area. During the laser-initiated

Fig. 1 Two-beam probing inspection of highway bridge.

vibration, probing points will have different character of movement: Probe-1 will not move and Probe-2 will move with vibrating surface. This difference in movement can be easily recognized by detection of resulting interference pattern which will move with frequency of laser-initiated vibration. Actually, power of interference signal in the detection channel will be fluctuating with frequency of laser-initiated vibration. This fluctuation can be used as a criterion of defect recognition.

It should be noted that both signals from two probing points will have speckle character. For effective interferometry it is necessary to use spatial filtering of the two signals.

3. Laboratory and field tests

The two-beam probing system has been designed assembled and tested both in laboratory and field conditions. In Figs. 2 and 3, laboratory setup and one of samples are demonstrated. Green (bright) points on the sample surface are probe positions and red (dim) point indicates impact position.

In this design, CO_2 laser impact in thermal mode is preferable. Pulse duration of 100 ns, impact energy 5 J, and impact beam spot of 35×25 mm were used. In this case, no laser damage of metal painting takes place.

When impact position and at least one of the probes position is located over defect area, detectable vibration can be initiated and detected. In no-defect area, no detectable vibration is observed. Figure 4 demonstrates waveforms and spectra of laser signals obtained in the defect and no-defect cases.

After successful laboratory tests, the system was prepared for the field experiments under real highway bridge. The system table was installed on the small track and delivered to the test site. Figure 5 shows the system under real highway bridge.

Fig. 2 Laboratory setup. Detection distance – 8 meters.

Fig. 3 A sample with metal/concrete interface.

Fig. 4 Waveforms and spectra obtained in the defect (top) and in no-defect area (bottom).

Fig. 5 Two-beam probing system under highway bridge.

Like in tunnel experiments, previously discovered defects were used for the system tests. During the experiments, the bridge was open for traffic and was heavy loaded all the time. As a result, field conditions were much more extreme than in laboratory. However, two-beam probing technique allows to operate even under these tough conditions. Figure 6 demonstrates waveforms and spectra obtained in real defect of metal/concrete interface of the highway bridge bottom side. Like in laboratory, vibration signal can be initiated and detected in real defect situation. In no-defect case, no vibration is detected. Only some signal instability is still observed.

In these experiments, 6 defect locations were inspected and all of them were recognized using the two-beam probing system. The results are considered to be very promising. Moreover, additional impressive benefit was revealed: the system was capable to run inspection procedure without removing the special protection net which is usually stretched under the bridge spans. It was found that despite of 30% loss of impact energy and power of signals after passing through the net it was still possible to detect laser-initiated vibration and locate defect areas.

4. Discussion and conclusions

The two-beam probing technique of laser-based inspection of civil structures has been presented.

Sensitivity of detection is acceptable for the location of dangerous defects. Reliable location of real defects in the field conditions has been demonstrated.

The technique provides really remote and non-destructive procedure of inspection. The technique does not require assembling and disassembling special scaffoldings which are necessary for hammer-based inspection.

In contrast to piezo-based inspection, laser-based technique requires very short time for changing impact/detection position. In principle, it is possible to develop inspection system with high-speed automatic scanning of inspected area and real-time processing of obtained data.

The main problem of the laser-based inspection is keeping signal stability. Many factors affect the system performance. The environment and the system itself should be as quiet as possible. Otherwise, protection against mechanical vibration

Fig. 6 Waveform and spectrum obtained in real defect (top) and in no-defect area (bottom).

and acoustic noise is necessary.

Comparison between the two-beam probing technique and photorefractive interferometry allows to say that the main advantage of photorefractive over two-beam probing interferometry is possibility of working with speckled laser beams. This fact leads to comparative simplicity of the system alignment. To realize interference and to record the dynamic hologram it is necessary just to intersect two signals in photorefractive crystal. In contrast, the two-beam probing requires spatial filtering of both interfering signals. That means it is necessary to take care of very accurate alignment of beam paths through spatial filters, and to keep this alignment in the field conditions.

The main disadvantage of photorefractive interferometry is non-linear character of laser beam mixing inside photorefractive material. Recording the dynamic grating with high diffraction efficiency takes certain time: for example, 15-20 ms in BSO crystal. This fact limits the field of application of this technique. For example, it is practically impossible to use photorefractive interferometry for the inspection of highway bridges under heavy traffic conditions. The two-beam probing technique is free of these problems. And it can be used effectively for inspection of unstable structures.

As well, it should be remembered that one of the most important conditions of realization of reliable photorefractive interferometry is forming the signal with intensity which is enough for recording the efficient dynamic grating. In field conditions, when the inspection distance is 5-10 meters, collected power of probing radiation scattered by inspected surface may be too low and not sufficient for the recording the efficient dynamic grating. In two-beam probing technique, signal power is limited only by dynamic range of photodetectors.

Finally, two-beam probing technique is still affected by speckled character of working signals. In spite of the fact that both signals are spatially filtered, signal intensity after spatial filters is randomly fluctuating. This leads to narrowing the time windows where it is possible to collect and process the inspection data.

Generally, both techniques can find their appropriate applications. Our team keeps working in both directions. Now, one of the main tasks is development of inspection algorithm with automatic scanning, real-time data processing and reliable defect recognition. Another task is speeding up the inspection procedure.

References

- 1) O. Kotyaev, Y. Shimada. ILT Annual Progress Report, 2013.
- O. Kotyaev, Y. Shimada, K. Hashimoto. Laser-Based Non-Destructive Detection of Inner Flaws in Concrete with the Use of Lamb Waves, Proceedings of the 9-th European Conference on Non-Destructive Testing. Berlin, Germany, 2006, p.23,
- Y. Shimada, O. Kotyaev, N. Misaki et al. Development of Laset-based Remote Sensing System for Detecting Concrete Defects. Journal of the Japan Society for Non-destructive Inspection, 61, 519-524, 2012 (in Japanese).

レーザーを用いた碍子表面塩分計測

レーザー計測研究チーム

谷口誠治、島田義則、本越伸二、岸田知門

1. はじめに

碍子は絶縁保持のため発変電所や送配電システムで 数多く用いられている。碍子は野外に設置されることが 多く、その表面には塩分が付着しやすいため定期的に付 着量を計測し、一定値を超えた時点で洗浄を行うことに より閃絡事故を防いでいる。塩分付着量の計測には筆洗

(ふであらい)法¹²⁾ (ハンド測定)を用いるのが一般 的であるが、この手法は蒸留水で付着した塩分を完全に 洗い流すのに熟練が必要で、手間もかかるという課題が ある。そこで当研究所では、レーザーを用いてより簡便、 迅速に付着塩分量の計測を行う手法を開発し、かつ実用 的で安価な計測装置を作製することを目標に研究を進 めてきた。

レーザーを用いた碍子付着塩分量計測法の開発に関 しては、藤吉(九大)らによる先行研究がある³⁾。彼 らはナノ秒パレスYAG レーザーの基本波を光源に用い、 碍子表面にレーザーを集光して付着した塩分(塩化ナト リウム)を蒸発、解離させ、ナトリウム原子からの自然 放出 (D 線、~589nm) のピーク強度を PMT (光電子) 増倍管) により計測して付着塩分量 (密度) を求める手 法について検討しており、碍子に人工的に定量の塩分を 付着させた試料を用いた実験において、塩分密度 0.005~0.1mg/cm²の範囲内では塩分密度とナトリウム D 線の強度が線形関係にあることを明らかにした。しかし ながらこれ以後は、続報や実用化例などは報告されてい ない。このことから我々は、まずこの手法の検証を行う ため、実際に屋外で使用されている碍子を用い、碍子表 面へのナノ秒 YAG レーザー (1064nm) 照射実験を行っ た。その結果、レーザー光強度が大きくなると碍子表面 がダメージを受け、碍子表面に塗布された釉薬が剥離す ることが明らかとなった(図1)。また YAG レーザー の高調波(355、532 nm)を用いた場合にも、ダメージ

閾値の違いはあるものの同様の現象が起こることが明 らかとなった(図2)。藤吉らも基本波での碍子のダメ ージ閾値を同様に計測しており、その値は1.03J/cm²と、 我々の値とほぼ一致する。碍子釉薬の主成分がガラスで あることを考慮すると、近赤外~近紫外の波長領域のレ ーザー光は碍子内部まで透過し、釉薬層と碍子本体の融 着面を破壊するものと考えられる。さらに、我々の実験 では碍子表面に塩分付着がない条件にもかかわらず、レ ーザー照射により碍子表面でナトリウム発光がみられ ることも明らかとなった。釉薬には酸化ナトリウム (Na₂O)がわずかに (~0.1%)含まれていることから、 レーザーエネルギーの一部が釉薬内のNa₂Oを熱励起す

図 1 ナノ秒パルス YAG レーザー (1064nm, 1.5J/cm²) 照射時に碍子表面に発生す るダメージ

図 2 照射波長に対するダメージ閾値の変化⁵(N-on-1 方式⁶ での観測値)
るものと考えられる。一方、藤吉らの報告では、0.8J/cm² の条件で洗浄後の碍子を用いた計測を行い、ナトリウム 発光が計測されたと報告しているが、彼らはこの結果を 洗浄し残した塩分に起因するものとしており、釉薬中の Na₂O が発光する可能性については言及していない。ま た、彼らは塩分塗布剤として食塩水に砥の粉を混合した 水溶液を用いていることから、おそらく表面に塗布され た砥の粉がレーザーエネルギーを吸収する役割を果た し、付着塩分の発光のみを観測できたものと考えられる。 しかしながら実際の碍子では、砥の粉のような大きな粒 子がない場合にも、碍子表面に直接塩分が付着する状況 が多くみられる。これらのことから我々は、YAG レー ザーを用いたシングルパルスによる塩分計測法は碍子 のダメージを誘発する危険性が高いと判断し、新たな手 法として、2 本のパルスレーザーを用いた塩分計測法

(ダブルパルス方式)を考案し、その開発に着手した。 計測原理を図3に示す。この方式では、まず低強度のパ ルスレーザー (プレパルスレーザー)を碍子表面に照射 して付着した塩分のみを飛散させる。その後遅延時間を 制御した高強度のパルスレーザー (メインレーザー)を 飛散塩分に集光照射してナトリウムを発光させ、その強 度から付着塩分密度を計測する。この方式で重要となる のは、プレパルスレーザーの選択である。碍子表面に付 着した塩分を飛翔させるには、紫外領域のレーザーを塩 分に直接吸収させる方法、あるいは赤外領域のレーザー を吸収性が高い碍子表面のガラス成分や塩分に含まれ る水に吸収させ付着塩分を加熱する方法があるが、本研 究では、レーザー装置の価格や安全性、可搬性なども考 慮して、赤外領域(波長約10µm)のCO,パルスレーザ ー (図4) を採用した。しかしながら、CO₂レーザーは 釉薬内のガラス成分に主に吸収されるため、強度が高い 場合には碍子表面が融解することによるダメージが入 る。これを防ぐため、我々は装置の回路設計の見直しや ガスの混合比、気圧などを調整してレーザー光を短パル ス化(~100ns)し、碍子表面の長時間加熱による影響 (融解など)を抑制した。このレーザー光を低強度 (3mJ/pulse、~0.6 J/cm²) で食塩水のみを用いて塩分を

図3 ダブルパルスレーザーを用いた付着塩分計測 法の原理図

付着させた碍子(塩分密度~0.05mg/cm²)へ照射したと ころ、碍子表面にダメージを与えることなく付着塩分の みを飛散させることに成功した。また、この照射条件で はNa₂Oによるナトリウムの発光も観測されないことも がわかった。短パルス化した条件ではこの出力がほぼ最 大であるため(max. 3.3mJ/pulse)ダメージ閾値は明確 ではないが、少なくとも塩分を飛散させるために必要な エネルギーはナトリウムの発光やダメージを与えるた めに必要なエネルギー値よりも低いものと考えられる。 一方、メインレーザーは空気中で集光するため碍子にダ メージを与える懸念がなくYAGレーザーを用いること が可能であるが、飛散した塩分を燃焼させるため、レン ズ集光時に10⁹W/cm²以上の強度を出力する光源が必要 である。

次の段階として我々は一昨年度、プレパルスレーザー に自作した CO₂ レーザーを、メインレーザーには上記 の条件を満たし、かつ小型のレーザーであるマイクロチ ップレーザー(浜松ホトニクス、レーザー出力 0.3mJ、 パルス幅 2ns)を用いてそれらを組み合わせた可搬型の 付着塩分計測装置を作製した。またこの装置を用いて一 定期間野外で自然汚染させた碍子 (曝露碍子)の付着塩 分密度計測を行い、筆洗法で求めた塩分密度値と比較し たところ、定量的にも比較的良い一致が見られたことか ら、本手法の有用性が示された4。しかしながら、一昨 年度に作製した装置は、レーザー照射および発光計測用 の光学系を配置した計測ヘッド部を CO, レーザー (重 量約 10kg)の出射口に直接取り付けたため、計測時に は碍子(重量約5kg)の位置を動かす必要があり、計測 点を増加させるためには長い時間が必要、という難点も あった。このことから昨年度(平成25年度)は、より 簡便で迅速な計測を可能にするため、CO,レーザーと計 測ヘッド部をファイバー伝送により分離して操作性を 高めた装置(ハンドホールド型)を新たに製作した。本 稿では、装置の概要、および本装置を用いて曝露碍子の 塩分密度計測を行いその性能を評価した結果について 報告する。

2. 計測装置

計測機器構成を図5に示す。プレパルスレーザーを 碍子表面に垂直入射して付着塩分を飛翔させ、特定の遅 延時間後にメインパルスレーザーを碍子表面の手前 1mm に焦点がくるように斜め方向から集光入射してナ トリウム発光を発生させた。図3に示すように、本来メ インレーザーの照射方向は試料面に対して平行である のが理想的であるが、集光用レンズには径4.7mmp(厚 さ3.5mm) のものを使用しているため、試料との接触面 からはみ出さないようレンズに角度をつけてある。ただ し、レンズの有効焦点距離は 6.1mm と短く、焦点通過 後のメインレーザーはエアーブレークダウンによる大 幅な強度の減少と光径の広がりが同時に起こるため、メ インレーザー自体が碍子表面にダメージを与えること はない(図9)。発生したナトリウムのD線は光ファイ バーを通してマルチチャンネル小型分光器 (USB 2000+、 オーシャンオプティクス)に導くことにより分光し、そ の発光強度を計測した。装置写真を図6に示す。計測へ ッド部 (図7) および電源部等をキャリーケース内に納 めることができるため装置の運搬が容易であり、

図5 計測機器構成

図6 レーザー計測器電源部

図7 計測ヘッド部

AC100V の電源が確保できれば屋外での計測も可能で ある。計測ヘッド部はプレパルス光をファイバー伝送す ることにより CO₂ レーザーを計測ヘッド部から分離し、 手で持つことが可能な形状に改良したものである (ハン ドホールド型)。これにより装置の操作性は大きく向上 し、ヘッド部を動かして碍子表面に接触させることが出 来るようになったため (図8)、計測点1点あたりに要 する時間を大幅に短縮できるようになった。

模擬試料(スライドガラスに一定濃度の食塩水を塗布 して乾燥し塩分を付着させた試料)を用いた計測例を図 9に示す。塩分付着がない場合にはメインインパルスレ ーザーによる大気ブレークダウン光のみが観測される。 スライドガラス内にも通常、Na₂Oが成分として含まれ ていることから、この結果は、Na₂Oに起因するナトリ ウム発光が発生しないことを示しており、プレパルスレ ーザーおよびメインレーザーが試料に直接ダメージを 与えることがないことを示している。一方、塩分が付着 した試料では、ナトリウム D線の発光ピーク (590 nm 付近)が塩分密度に依存した形で検出されていることが わかる。また、通常2ピーク (589nm, 589.6nm) 生成す るナトリウムD線が実験では1ピークしか観測されない が、これは分光器の分解能によるものであり、実際の計 測に大きな問題はないと考えられる。

図8 作製した装置による碍子表面塩分計測の様子

3. 曝露碍子の塩分密度計測

製作した装置を用いて屋外で曝露した碍子(曝露碍 子)の塩分密度計測を行い、その性能評価を行った。曝 露時期、期間、塩分付着量も異なる3種類の曝露碍子を 用いた。レーザー計測では、1度の測定で得られる値は プレパルスの照射面積に相当する0.8mm[®]であることか ら、曝露碍子全体の平均塩分密度を計測するためには多 点での計測が必要である。このため碍子の裏面(ひだ) 部分を6つの領域に分け、各領域で24点を選択し、合計

144点の計測データを取得した。計測点によってはナト リウム発光が得られない箇所もあるが、塩分は碍子上に 不均一に(まばらに)付着していると考えられるため、 それらの結果は計測点に塩分付着がないものとして含 めた。得られたデータは碍子の表面積を考慮した上で平 均化し、碍子全体の塩分密度を示す値とした。基準とな る曝露碍子全体の付着塩分密度は、レーザー計測後に同 じ碍子を筆洗法により求めた。曝露碍子には塩分だけで なくさまざまな塩類が付着しているが、濃度計測には Naイオンメーターを用いており、碍子上に付着したナ トリウム塩濃度とD線のピーク強度を直接比較できる。 両計測値を比較した結果を図9に示す。両計測値はほぼ 比例関係にあるため、検量線を作成することにより付着 塩分の計測ができる。また測定可能域については密度約 0.002 mg/cm²の付着塩分が検出できている。碍子洗浄が 必要な密度は0.03 mg/cm² であるため、本装置を用いれ ば少なくともその10分の1以下の低密度の計測が可能で ある。

4. まとめ

碍子付着塩分量計測の簡便化、迅速化を目指し、ヘ ッド部をハンディホールド型に改良したレーザー計測 装置を構築し、曝露碍子の塩分密度計測を行った。その 結果、約0.002mg/cm²の低密度計測が可能であることが わかった。また本装置は計測に必要な面積が微小である ため、検査後も塩分付着の履歴がリセットされずトレン ド管理が可能であることや碍子の部位別(碍子裏面の外 ひだと内ひだなど)の塩分密度や付着塩分の分布が計測 できる等、従来法にない利点も持ち合わせている。

謝辞

本研究は、関西電力(株)の受託研究により行われた。 また塩分計測に用いた曝露碍子は日本ネットワークサ ポート(株)より提供を受けた。また、CO₂レーザーの 作製にあたり、大阪大学レーザーエネルギー学研究セン ター實野孝久特任教授から技術提供を受けた。

参考文献

- 2) 変電設備の耐塩設計、付録IV汚損量の測定方法と汚損検出 器'、電気協同研究、35(5)、125-128、1979.
- 2) 秤 俊久、R&D News Kansai, 8, 35-37, 1997.
- 3)藤吉晋一郎,本田親久,村岡克紀,前田三男,レーザー研究, 20(12),955-962,1992.
- 4) 島田義則,ILT2013 年報, レーザー技術総合研究所, 2013.
- 5) 島田義則他, "レーザーを用いた碍子表面塩分計測", 平成26 年電気学会 C部門大会予稿集, to be published.
- 6) J. G. Wilde, et al.: NIST Spec. Publ., 755, 259-264, 1989.

レーザー計測による光活性蛋白質のフェムト秒反応ダイナミクス

レーザーバイオ化学研究チーム

谷口誠治、ハイク コスロービアン

1. はじめに

本研究チームでは、創薬への応用や光機能性素子の開発を目指し、生体内で様々な機能を果たす蛋白質や酵素等の生体関連物質の光初期反応メカニズムとダイナミクスを、超短パルスレーザーを用いた時間分解計測法により明らかにする研究を行ってきた。本稿では、生体内でD-体のアミノ酸を酸化分解する機能を持つD-アミノ酸酸化酵素(D-amino acid oxidase, DAAO)の機能阻害効果について検討した結果を報告する。

2. D-アミノ酸酸化酵素 (DAAO) の生体内機能と 阻害剤の効果

蛋白質、あるいは蛋白質を基に構成される酵素は、 化学物質の吸収、輸送、代謝等、生体内における様々な 化学反応を制御する触媒としての機能を担う。それらの 機能メカニズムを明らかにすることは生物学や生化学、 医学分野において必須の課題である。蛋白質の機能解明 のため多く行われている研究手法に、特定の蛋白質(蛋 白質中に存在する補因子)に蛋白質が作用する特定の分 子(基質)以外の分子を付加し、それらの反応性の変化 を観測することで蛋白機能の要因を明らかにしようと するものがある。またこのような手法は、薬学分野にお いてはウィルスや細菌内の蛋白質の機能を阻害して増 殖を抑制する、体内で異常に活性化した蛋白質を不活性 化し疾病を治療する、等を目的とした薬剤(阻害剤)の 開発手法でもある。

蛋白質の機能阻害効果の研究に関して最近、D-アミノ酸酸化酵素(DAAO、図 1(a))のアミノ酸濃度
調整機能が注目を集めている。DAAO は分子量
39335 (39kDa)の比較的小さな酵素で、補因子に
フラビンアデニンジヌクレオチド(FAD、図 1(b))
を持ち、生体内でD-アミノ酸(D-セリン)を選択

図 1 (a) ブタ腎臓由来 D-アミノ酸酸化酵素
 (DAAO)の結晶構造(2量体、PDB ID:
 1VE9)、(b)補因子フラビンアデニン
 ジヌクレオチド(FAD)の分子図

図3 阻害分子による DAAO の機能阻害効果

的に代謝(分解)する反応を示す(図2)が、FAD が安息香酸等種々の分子と結合して錯体を形成 するため、薬剤による阻害効果が顕著に見られる ことでも知られている¹⁾(図3)。また DAAO は 古くからその存在が知られており、ヒトを含む高 等生物の腎臓や肝臓、脳等に多く存在するが、本 来生体は L-アミノ酸のみによって構成されるた め、DAAO が体内で具体的にどのような役割を担 っているかについてはよくわかっていなかった。 これに対し近年、福井ら(徳島大)は統合失調症 患者の脳内 D-アミノ酸濃度が DAAO の異常活性 により通常よりも低下していることをつきとめ、 薬剤(阻害剤)の投与が脳内 DAAO の反応活性を 抑制し、脳疾患の治療に有効であると報告した²⁾。 この報告は、生体内での DAAO の役割を明らかと するだけでなく、様々な脳疾患に対する治療薬開 発の足がかりとなるという意味で非常に重要な ものであるが、それと同時に DAAO と阻害分子の 錯体形成メカニズムや、形成された錯体の物性に も興味が注がれる。

一方、DAAO は光科学の観点からみても興味深 い酵素である。FAD を補因子に持つ DAAO はフ ラビン蛋白質の一種で、FAD 中のイソアロキサジ ン(Iso、図 1(b)中() 内の分子) は青色領域の 光を吸収し緑色(530 nm 付近)の蛍光を発する。 その強度やスペクトル形状は蛋白質の反応に敏 感に応答するため、それらを分光学的手法により 観測すれば反応メカニズムに関する有益な情報 が取得できる。またフラビン蛋白質は光励起によ り周囲のアミノ酸残基(チロシン、トリプトファ ン)との電子移動や水素移動反応を引き起こすも のが多く、蛍光強度の時間変化を計測する手法

(時間分解蛍光計測法)を用いれば蛋白質の光反 応過程を直接的に観測できる。さらに興味深いこ とに、福井らはクロルプロマジン等一部の阻害剤 に光照射による阻害活性の増大効果がある³こと も報告している。このことから我々は、DAAO と 阻害剤との反応を分光手法により観測するによ り、DAAOの機能阻害メカニズムに関するこれま でにない有益な知見が得られると考えた。本研究 では、DAAOの蛍光過程と機能阻害効果の関連性や、 時間分解蛍光計測法の阻害効果観測への有用性等を明 らかにすることを目的に、DAAO、およびDAAO に阻 害分子を添加した試料の光励起ダイナミクスをフェム ト秒蛍光計測法により観測した。本稿では、阻害剤とし て高い阻害効果を示すことで知られるアミノ安息香酸 を用いた結果について報告する。

3.実験

実験には、ブタ腎臓由来 D-アミノ酸オキシダーゼ (和光純薬工業、592-00771)を精製したものを使用し た。溶媒には、塩酸により pH を 8.3 に調整したピロリ ン酸緩衝液 (17 mM)を用いた。また阻害剤には4-ア ミノ安息香酸ナトリウム (Sodium Anthranilate、東京化 成工業、A0501、図4)を用いた。フェムト秒蛍光の計 測にはTi:サファイアレーザー (Coherent, Mira-800)を 光源に用いた蛍光アップコンバージョンシステムを用 いた4。励起波長は410 nm、装置の時間分解能は約 200 fs である。

図4 阻害剤(4-アミノ安息香酸ナトリウム)の分子図

4. 結果と考察

4.1 吸収、蛍光スペクトル

図 5、図 6 に DAAO(160 µ M)、および DAAO に 4アミノ安息香酸ナトリウム(o-AB)を過剰(32mM) に添加した試料の吸収、蛍光スペクトル(励起波長 410 nm)をそれぞれ示す。観測されたスペクトルは FAD の 第一電子励起状態に由来し、吸収ピーク波長は 375、449 nm、蛍光ピーク波長は 525 nm である。ただし、DAAO は溶液中では単量体だけでなく 2 量体としても存在す ることが知られており⁵、この試料は DAAO 単量体と 2 量体の 2 種が混合したものである。DAAO に o-AB を添 加すると、吸収スペクトルに変化がみられる。48 0nm 付近の吸収の肩が減少し、500~600 nm の領域に新たな 吸収帯が生成する。この吸収帯は DAAO 中の FAD と o-AB が結合し生成した電荷移動錯体(CT 錯体)のに由 来し、それぞれの吸収帯の吸光係数の比から存在比を求 めると試料全体の約 13%が錯体化したと考えられる。 一方蛍光スペクトルは、o-AB の添加により若干短波長 側にシフトした。o-AB 添加により pH 等 FAD 周囲の蛋 白質環境がやや変化したものと考えられるが、FAD の 電子状態が大きくは変化しない CT 錯体とは別種の o-AB 配位体が存在する可能性もある。また CT 錯体の 励起(励起波長 540 nm)では蛍光は観測されなかった が、このことから CT 錯体の励起状態は短寿命であると 考えられる。

(71 mM) 添加試料のフェムト秒蛍光と多成分 指数関数によるフィッティング曲線

4.2 DAAO のフェムト秒蛍光ダイナミクス

DAAO (163 µM) のフェムト秒蛍光計測結果 (観測 波長 525 nm) を図 7(a)に示す。 蛍光は非指数関数の減衰 を示し、2成分指数関数でのフィッティングにより3.7ps (0.49)、37.8 ps (0.51)の寿命成分が得られた(()) 内は前指数因子の比を示す)。FAD 単体の蛍光寿命は 2.5ns と長寿命であるため、この速い減衰は光励起され た FAD と周囲に複数存在するアミノ酸残基(チロシ ン)との電子移動反応に起因するものである。ブタ腎 臓由来 DAAO の蛍光寿命は、先に中島、田中らによる 単一光子計数法を用いたピコ秒領域での計測例があり、 単量体の蛍光寿命は約160 ps、2量体の寿命は約40 ps と報告されている?。このことから、本測定で得られた 37.8 ps の寿命は2量体の励起寿命に同定される。試料内 には単量体、および蛋白構造が壊れた FAD が不純物と して存在し、それらの蛍光減衰成分は2量体の減衰に含 まれていると考えられるが、フェムト秒領域の計測では

表1 DAAO および4アミノ安息香酸(o-AB)添加試料の蛍光寿命フィッティング結果

Sample	τ_1/ps	$A_1{}^a$	τ_2/ps	$A_2{}^a$	τ_3/ps	A_3^{a}	χ^{\Box}
DAAO	-	-	3.7	0.49	37.8	0.51	0.102
DAAO+o-AB(18mM)	0.38	0.27	3.7 ^b	0.40	37.8 ^b	0.33	0.131
DAAO+o-AB(71mM)	0.26	0.71	3.7 ^b	0.31	37.8 ^b	0.18	0.184

^aA₁、A₂、A₃はそれぞれ蛍光寿命 τ₁、τ₂、τ₃の前指数因子の比を表す

^bフィッティング時に数値を固定した

長寿命 (>100 ps) の蛍光減衰は成分比が小さくなるた め、ここでは無視できる。一方、本測定では3.7 ps の速 い減衰成分が新たに観測されている。蛍光減衰寿命の変 化はFAD とアミノ酸残基間の電子移動速度が変化する ことにより起こると考えられるため、DAAO には単量 体や2 量体とは別の構造を持つもの(蛋白構造異性体) が存在している可能性がある。これについては後述する。

図 7(b)、(c)に、DAAO に o-AB をそれぞれ 18 mM、 71 mM 加えた試料のフェムト秒蛍光を示す。o-AB の添 加により寿命数 100 fs の超高速減衰成分が生成した。 o-AB 濃度の増大によりその成分比が大きくなることか ら、この減衰は DAAO 中の FAD と o-AB 間で形成され た CT 錯体に起因するものと考えられる。各実験データ は超高速成分を加えた 3 成分指数関数によりフィッテ ィングした。ただし、DAAO の計測で得られた 2 つの 寿命 (3.6 ps、37.8 ps) は、o-AB と錯体を形成しない DAAO に起因するものであるため、パラメータ化せず 固定した。結果を表 1 に示す。超高速減衰成分の寿命

(τ₁)は o-AB 18 mM 添加試料で 380 fs (0.27)、71 mM
添加試料では 280 fs (0.51)であり、濃度の増大に対し
てその存在比も増大することがわかる。一方、o-AB と
錯体を形成しない DAAO の 2 つの寿命 (τ₂、τ₃)に関し
て、それらの前指数因子の比 (A₂/A₃)が DAAO のみの
試料では 0.96 (0.49/0.51)、o-AB 濃度 18 mM で 1.21

(0.40/0.33)、71 mM の試料では 1.72 (0.31/0.18) と o-AB 濃度に依存して変化することがわかった。これはおそら く 37.8 ps の寿命を持つ構造異性体の o-AB との反応性が 3.7 ps の寿命を持つものよりも高く、o-AB との錯体形成 が優先して起こるためであると考えられる。このことか ら、やはり DAAO には単量体、2 量体とは別の構造異 性体が存在する可能性が高い。

DAAO の構造に関して、最近 Kokpol, 田中らが興味 深い報告を行っている⁷。彼らは分子動力学(MD)計 算法を用い、X線結晶構造解析により得られた2量体の 構造を出発点として水溶液中での DAAO の構造を計算 した。その結果、2 量体を形成する DAAO のそれぞれ が異なる蛋白構造(サブユニット)を持つことが明らか となった(SubA10 および SubB10、図8 を参照)。この 結果を今回の計測結果と比較すると、DAAO の光励起 過程に関して以下のような説明が可能となる。DAAO2 量体はそれぞれが異なる構造を持つ2種のサブユニッ トで構成されており、光によりそのどちらかの FAD が 励起される。FAD の吸収帯は変化していないことから 励起比は 1:1 と予想される。励起された FAD は周囲の チロシンと電子移動反応を引き起こすが、サブユニット の蛋白構造の違いにより、電子移動過程は寿命が 3.7ps のものと 37.8 ps のものの2 種が存在する。また各サブ ユニットの阻害剤との反応性は異なっており、o-AB を 添加した場合、サブユニットのどちらかが優先的に結合 するため、o-ABと結合せずに残った DAAO のサブユニ ットの存在比はo-ABの濃度に依存して変化するものと 考えられる。これらの結果は、水溶液中での DAAO の 構造が結晶中とは異なり多様に変化すること、その変化 により阻害剤による効果も異なる可能性があることを 示しており非常に興味深い。現状ではどちらのサブユニ ットがより速い電子移動を示し、また優先的にo-ABと 結合するか等については明らかではないが、今後電子移 動理論計算や、蛍光ダイナミクス計測による阻害剤効果 の検討を継続し、これらについてより詳細に検討する予 定である。また今後はヒト由来の DAAO を用いた研究 を同様に進め、創薬等への応用に向けたより実用的な知 見を得たいと考えている。

図8 MD計算により予測した、水溶液中で2量体を形 成する DAAO の2種の蛋白構造(10°C)(参考文 献7より抜粋)

5. まとめ

本研究では、ブタ腎臓由来の D-アミノ酸酸化酵 素(DAAO)の機能阻害効果について検討するた め、阻害剤に4-アミノ安息香酸(o-AB)を用いて DAAO および阻害剤を添加した試料のフェムト 秒蛍光ダイナミクスを観測した。DAAO の蛍光は 寿命 3.7 ps、37.8 ps の 2 成分指数関数の減衰を示 した。分子動力学計算から水溶液中では蛋白構造 が異なる2種のDAAO異性体(サブユニット)の 存在が予測されることから、得られた寿命成分は それぞれ各異性体で起こる光誘起電子移動反応 の速度を表していると考えられる。o-AB を添加 した試料では寿命約300fsの超高速減衰が観測さ れ、その成分比は o-AB の濃度に依存して増大し たことから、この減衰は補因子 FAD が o-AB と結 合した CT 錯体に起因するものであると考えられ る。一方、o-AB と錯体を形成せず残った DAAO の蛍光減衰寿命の成分比は o-AB の濃度に依存し て変化したため、サブユニットの違いにより o-AB との反応性が異なることがわかった。これらの結 果は DAAO の蛋白構造の変化が阻害剤効果にも影響 することを示しており、興味深い。またこれらの結果は

フェムト秒蛍光計測により初めて明らかにされたもの であり、本手法が酵素の機能阻害効果の観測に有効であ ることを示すものである。今後、理論計算も含めこれら についてさらに詳細に検討するとともに、ヒト由来の DAAOを用いた研究を同様に進め、創薬等への応用に 向けたより実用的な知見を提供する予定である。

謝辞

本研究は、田中文夫 Chulalongkom 大学客員教授(レ ーザー総研特別研究員(兼務))との共同研究として行 われたものである。また計測に用いた酵素の精製には、 北村昌也大阪市立大学大学院工学研究科教授、中西猛同 講師の協力を得た。ご協力に感謝致します。

参考文献

- 1) R. Miura et al.: J. Biochem., 122, 825-833, 1997.
- K. Fukui, H. K. Park, T. Kawazoe, K. Ono, S. Iwana, Y. Tomita, K. Yorita, T. Sakai and Y. H. Kong: Flavins and Flavoproteins, 2005, 853-860, 2005.
- S. Ishikawa, T. Kawazoe, H. K. Park, K. Tsuchiya, K. Ono, K. Yorita, T. Sakai, T. Kusumi and K. Fukui: J. Enzim. Inhib., 23, 901-911, 2008.
- N. Mataga, H. Chosrowjan, S. Taniguchi, F. Tanaka, N. Kido and M. Kitamura: J. Phys. Chem. B, **106**, 8917-8920, 2002.
- H. Chosrowjan, S. Taniguchi, N. Mataga, T. Nakanishi, Y. Haruyama, S. Sato, M. Kitamura and F. Tanaka: J. Phys. Chem. B, 114, 6175-6182, 2010.
- (a) N. Nakashima, K. Yoshihara, F. Tanaka and K. Yagi: J. Biol. Chem., 256, 5361-5263, 1980.
 (b) F. Tanaka, N. Tamai and I. Yamazaki: Biochemistry, 28, 4259-4262, 1989.
- A. Nueangaudom, K. Lugsanangarm, S. Pianwanit, S. Kokpol, N. Nunthaboot and F. Tanaka: Phys. Chem. Chem. Phys., 16, 1930-1944, 2014.

Ultrafast fluorescence up-conversion technique and its applications to flavoproteins

Laser Biochemistry Research Team

Haik Chosrowjan and Seiji Taniguchi

1. Introduction

Time resolved fluorescence spectroscopy is one of the widely used techniques for studying the structure, function and reaction dynamics of macromolecules in chemistry and biology. Fluorescence is often sensitive to small environmental changes of chromophores - small molecules embedded in proteins and absorbing light, hence responsible for proteins color. So, fluorescence measurements could reveal ligandinduced conformational changes in proteins, origins of charge transfer reactions, solvent relaxation phenomena and local conformational changes in- and around the chromophore in proteins. Most fluorescence decays occur in the time window of ~ 100 fs to nanoseconds, measurements thus require short light pulses and high temporal resolution instrumentation. Many different techniques have been developed to obtain time resolution in fluorescence spectroscopy. For instance, photo-cathode based techniques like TCSPC (time-correlated single photon counting)¹⁾ and streak camera²⁾ allow detecting weak time-resolved fluorescence signals, however, very careful de-convolution procedures are needed to get picoseconds time resolution. At sub-picoseconds resolution level these techniques become both expensive and labile, and system maintenance for day to day reproducibility of sensitive sample measurements is challenging and often impossible. In recent years, a number of advanced and stable ultrafast lasers (primarily Ti:Sapphire based lasers with ~ 100 fs or shorter pulse widths) and associated optoelectronic instruments have emerged and are commercially available. Hence, as a matter of fact, to obtain time resolution comparable to excitation laser pulse width, nonlinear laser sampling techniques could be the best choice. The use of an optical Kerr effect as an optical shutter was first proposed in 19681). It makes use of the

transient birefringence (3rd order nonlinear effect) induced in a medium with high nonlinear susceptibility χ^3 by an intense laser pulse to create an ultrafast shutter. Liquids (CS₂, benzene, toluene) or solid state materials (glasses, fused silica doped with gold nano-particles) have been used as a gate and instrument response function as fast as ~ 200 fs was demonstrated⁴). However, the Kerr shutter contrast is inherently poor due to the nuclear motion induced slow birefringence recovery component. Furthermore, low sensitivity and spectral restriction to a visible range limit the applications of this technique.

Another nonlinear sampling technique is based on a phenomenon of sum frequency generation of light (2nd order nonlinear effect) in a non-linear crystal (KDP, LiNbO3, BBO, etc.), thus being an intrinsically high resolution spectroscopic technique. Because the emission signal is generated at the sum frequency (higher photon energy), this technique is called "fluorescence up-conversion". In regard to time resolution, measurement sensitivity and accuracy, the fluorescence up-conversion technique is ultimately the most competitive one. In Section 2 of this report, the basic principles of the technique, requirements to the non-linear crystals, mixing spectral bandwidth, acceptance angle, etc. have been summarized. We have developed conventional- and microscope based fluorescence up-conversion techniques for studies of protein reaction dynamics and other ultrafast phenomena in solution and solid state phases, respectively.

Flavoproteins contain FAD (flavin adenine dinucleotide) or FMN (flavin mono-nucleotide) as a cofactor (Fig. 1 a, b) and play an important role in oxidation, oxygenation and ET (electron transfer) reactions. Applications of fluorescence up-conversion technique to various "non-fluorescent" flavoproteins - RBP (Riboflavin binding protein), MCAD (Medium-chain acyl-CoA dehydrogenase), FD (Flavodoxin), DAAO (*d*-amino acid oxidase), etc., have been performed in our laboratory and some results related to solution phase dynamics are presented here. Briefly, the flavin enzymes (Fig. 1 c) are especially interesting model systems for elucidating ultra-fast ET reactions taking place in chromophore binding pockets. When the flavin chromophore is in the oxidized form, it acts as a strong electron acceptor, therefore, if such aromatic amino acid residues as tryptophan and/or tyrosine are in close proximity to flavin, strong fluorescence quenching via ET on ultrafast time scale ($10^{-14} - 10^{-10}$ s) occurs. In Section 3, we will present and discuss effects of ES (<u>e</u>lectro-<u>s</u>tatic) charge variations in proximity of donors and acceptor on ultrafast ET dynamics of FBP (<u>EMN-binding protein</u>).

Fig. 1 Molecular structures of flavin chromophores; (a) FAD (flavin <u>a</u>denine <u>d</u>inucleotide) and (b) FMN (flavin <u>m</u>ono-<u>n</u>ucleotide), (c) The ribbon diagram of the chromophore binding pocket of FBP enzyme.

2. Fluorescence up-conversion technique

2.1 Basic principles

The time resolution mechanism underlying the fluorescence up-conversion technique is illustrated in Fig. 2. The up-conversion is actually a cross-correlation between the fluorescence and a probe laser pulse. At time t = 0, the sample is electronically excited by second (in some cases third) harmonics of an ultrafast laser pulse with frequency $\omega_{\!\scriptscriptstyle D}\!.$ The collected incoherent fluorescence (ω_f) and the probe laser pulse $\omega_{\rm p}$ arriving at time $t = \tau$ are co-focused in a non-linear optical crystal oriented at an appropriate angle with respect to the fluorescence and laser beams. Sum frequency photons are generated only during the time that the probe laser pulse is present in the crystal, acting as a "gate" - thus keeping the time resolution within the laser pulse width. The time evolution of the fluorescence may then be traced by varying the delay τ of the probe laser beam. It is easy to show that the intensity of the signal beam at sum frequency and at a given delay time τ is proportional to the correlation function of the fluorescence with the probe laser pulse. Main features for successful up-conversion measurements are briefly summarized below: Polarization; The up-conversion process (sum frequency generation) is intrinsically a polarization selection process (for

example, $\mathbf{O} + \mathbf{O} \rightarrow \mathbf{E}$ conversion in Type I NLO crystal).

Fig. 2 Schematic diagram describing the basic principles of the fluorescence up-conversion technique.

Hence, for collection of different polarized emission components, rotation of excitation pulse polarization with a thin half-wave plate is required.

Phase matching condition; The up-conversion process is efficient only when condition for phase matching is satisfied. This happens for a narrow band of wavelengths centered at a wavelength determined by the phase matching angle θ of the NLO crystal. The conditions for the involved frequencies ω and corresponding wave vectors $k (2\pi n/\lambda)$ are $\omega_{\rm S} = \omega_{\rm f} + \omega_{\rm p}$ and $k_S = k_f + k_p$, respectively. Here the indexes S, f and p denote the up-converted signal, fluorescence and probe laser beams, respectively. In practice, the angle between k_f and k_p is kept constant (~ 15° in our apparatus). For BBO (β -barium borate) crystal, which is well suited for the up-conversion, the phase matching angle (the angle between crystal optical axis and vertical axis) is about 30° for 800 nm and 400 nm mixing (signal at 266.7 nm). For other monitoring wavelengths, the crystal angle can be gently tuned. For the probe wavelength at ~ 800 nm, the BBO crystal can cover 250 - 2000 nm broad mixing spectral range.

Acceptance angle; The acceptance angle is the angle where the phase mismatch is less than 90°. This is another important factor in up-conversion experiments. Since the fluorescence is spontaneous, it is emitted in all directions from the excited spot of the sample, then collected and refocused onto the NLO crystal in a broad cone. Hence, the larger the acceptance angle that can be phase matched by the crystal, the larger the up-conversion efficiency. Roughly, the acceptance angle ϕ increases inversely with the crystal length L. Thus, for thinner crystals the focus can be tightened due to larger acceptance angle. As a result, the total up-conversion signal will stay relatively constant for thinner crystals in addition to better time resolution. For L = 0.4 mm BBO crystal the acceptance angle is estimated to be ~ 8°.

<u>Spectral bandwidth</u>; The up-conversion spectral bandwidth is estimated by the spectral position difference when the quantum efficiency drops to 50%. Additionally, there is a complicated interplay between the NLO crystal thickness and fluorescence spectral bandwidth. For L = 0.4 mm BBO crystal at 820 nm/500 nm mixing, the spectral bandwidth is less than 1 nm. Up-conversion is an intrinsically high-resolution spectroscopy.

Quantum efficiency of up-conversion; Quantum efficiency of up-conversion can be estimated for "small signal" condition, i.e. no depletion of the fluorescence and probe pulse powers. For example, for 100 fs probe pulse, 0.5 W average power at 820 nm, 0.1 mm spot diameter and 76 MHz repetition rate it is about 0.001 % for L = 0.4 mm BBO crystal. This is, however, more than enough for monitoring by average UV photomultipliers. The obtained S/N ratio is routinely 10².

<u>Group velocity mismatch</u>; In non-linear processes such as sum frequency generation, the mismatch between the group velocity of ultrafast probe pulse and fluorescence may lead to a temporal broadening of the generated up-conversion signal. This restriction is more severe than the one imposed by phase mismatching discussed above. This broadening effect can be pre-compensated by a pulse compressor and/or minimized by a proper choice of optical elements by using refractive optics and thinner NLO crystals.

2.2 Home-made fluorescence up-conversion apparatus

As it was presented above, ultrafast fluorescence upconversion technique has many peculiarities, that's probably why it is not available commercially. We have built a reliable system in our laboratory (Fig. 3) with high temporal resolution

Fig. 3 Schematic diagram of the fluorescence up-conversion.

and sensitivity, briefly described below.

A Ti:Sapphire laser system (Verdi-V8 pumped Mira 900, Coherent, Inc.) was used as a light source (120 fs, 76 MHz, 800 mW at 820 nm). The pulses were further compressed up to ~ 70 fs fwhm using a prism pair compressor. The second harmonic (~ 20 mW) was generated in a 0.1 mm thin BBO crystal and focused onto the sample circulating in a flow cell (50 ml/min) with 1 mm light path length to generate the fluorescence. It is then collected with a pair of parabolic mirrors and focused, together with the residual fundamental laser pulse, on a 0.4 mm BBO type I crystal to generate the up-converted signal at the sum frequency. After passing through a grating monochromator (1200 g/mm, Acton Research Corp.), the fluorescence is detected by a photomultiplier (R1527P) coupled with a photon counter (C5410) system (both from Hamamatsu Photonics K. K.). The fluorescence decay curves can be obtained by varying the optical path length of the computer controlled delay stage for the fundamental laser pulse. Ten scans (~6.67 fs or 20 fs steps) in alternate directions are usually accumulated to obtain a single transient with acceptable S/N ratio. As an instrument response function, the cross-correlation signal between the fundamental and its second harmonic pulses is used (fwhm \sim 130 fs). All measurements are usually carried out at $\sim 20^{\circ}$ C. In the experiments described below, the optical density per 1 cm path-length was \sim 3 at 410 nm.

3. Applications to flavoproteins

As an application example, here we present our recent studies on wild type (WT) FBP (flavin <u>b</u>inding <u>p</u>rotein) and its six point mutants W32Y, W32A, E13R, E13K, E13Q and E13T. Generally, proteins including also FBP, contain many ionic groups which may influence the intra-protein ET rates. The specific purpose of this study was to understand and elucidate the role and influence of ES (<u>e</u>lectro-<u>s</u>tatic) charges and corresponding energies on the ET rate. Many details of this study can be found elsewhere⁶. Briefly, FBP from *Disulfovibrio vulgaris* (Miyazaki F) is one of the smallest flavoproteins (122 amino acids, 13 kDa) and contains FMN as a cofactor. It is thought to play an important role in ET processes in the bacterium, however, the whole picture of the electron flow and coupling to the redox proteins is not clear yet. According to the three-dimensional structures determined by X-ray crystallography, there are 3 potential quenchers located close to the Iso (isoalloxazine) rings of the FMN (Fig.4, top):

Fig. 4 Chromophore binding pocket structures of WT FBP, E13K and E13R point mutants determined by X-ray crystallography.

tryptophan at 32nd position (Trp32), Tyrosine at 35th position (Tyr35) and another tryptophan at 106th position (Trp106). Corresponding center-to-center distances from Iso to Trp32, Tyr35 and Trp106 were 0.71 nm, 0.77 nm and 0.85 nm, respectively. Firstly, to determine which amino acid is the dominant quencher in this protein, fluorescence dynamics of two point mutations W32Y (Trp at 32nd position was replaced by Tyrosine) and W32A (Trp at 32nd position was replaced by Alanine) were studied and compared with the dynamics of WT FBP (Fig. 5).

It is important to note, that fluorescence up-conversion technique can experimentally determine if there is substantial amount of water involved in the chromophore surroundings or if the protein binding pocket structure is flexible. Such information can be obtained by spectral measurements. In the present study, transient fluorescence decays were measured at several observation wavelengths between 480 – 600 nm and no dynamic Stokes shift or other marked wavelength dependences were observed in all seven proteins examined. Furthermore, the time-resolved anisotropy was ca. 0.4 and constant for all systems, further confirming that neither rotational motions nor changes in electronic state of Iso take place. Hence, we can safely conclude that the protein binding

Fig. 5 Fluorescence decay curves of WT FBP, W32Y and W32A point mutants at steady state fluorescence maxima (~ 530 nm) with ~ 170 fs, ~ 11 ps and ~ 40 ps average lifetimes, respectively.

pocket structures are sufficiently rigid in all systems and further discussions are carried out for the single wavelength measurements at emission maxima (~ 530 nm) of these proteins. For comparison, the ET rate in W32A, where tryptophan is replaced with neutral alanine possessing no quenching capability, is more than 200 times lower compared with the ET rate in WT FBP, indicating, that the ET contributions from two other quenchers Tyr35 and Trp106 are negligible. Even when the tryptophan at 32nd position is replaced by potential quencher tyrosine in W32Y, the ET rate is about 65 times lower vs. the WT FBP. Hence, Fig. 5 clearly shows that the main fluorescence quencher in FBP is tryptophan at 32nd position due to its close proximity to Iso and higher (~ 8 eV) ionization potential. Next, to elucidate the effect of electrostatic charge distribution in the protein on the ET rate, we have investigated four single-substitution isomorphs: E13K, E13R, E13T and E13Q. In all these systems the negatively charged glutamic acid at 13th position was replaced by positively charged lysine (E13K) or arguinine (E13R), and neutral threonine (E13T) or glutamine (E13G). Interestingly, according to X-ray crystallographic structures of

Fig. 6 (bottom to top) Fluorescence decay curves of E13R, E13K, WT FBP, E13T and E13Q isomorphs at steady state fluorescence maxima (~ 530 nm). The dotted line represents the instrumental response function. The fitting curves to experimentally obtained data have been omitted for clarity.

these mutants, the distances between the Iso and all three quenchers Trp32, Tyr35 and Trp106 were almost unchanged (Fig. 4). Moreover, the hydrogen bonding network between Iso and Gly49, Pro47, Thr31 in WT FBP was unaltered in all other systems as well. Hence, one would expect the same ET rate as in the WT FBP for all four mutants. However, as presented in Fig. 6, the experimentally obtained ET rates varied for these systems. The observed fine tuning of fluorescence decay curves describing the ET rate changes could be ascribed to the ES charge redistribution in the protein binding pocket. Indeed, ET rate calculations using Kakitani -Mataga ET model theory^{6,7)} confirmed that the main reason for the observed rate changes is the change in net ES energies of Trp32 in each system. For reference, the net ES energy of Trp32 in WT FBP was ~ 0.026 eV, however, in E13K and E13R it increased to \sim 0.29 eV; in E13T and E13Q it was \sim 0.4 eV. Calculations of the total free energy gap $(-\Delta G_T^{\circ})$ showed that its value was smallest for E13T and E13Q (ca. 0.065 eV), followed by E13K and E13Q, and then by WT FBP, which has the largest value equal to ~ 0.45 eV. Interestingly, the ET rates from Trp32 to excited Iso* were fastest in E13K and E13R, followed by WT FBP, E13T and E13Q, respectively. This seemingly inconsistent result is clarified in Fig. 7, where ET rate (k_{ET}) dependence on total free

Fig. 7 Trp32 to excited Iso^{*} ET rate dependence on total free energy gap, $-\Delta G^{\circ}_{T}$. Donor-acceptor distances were similar in all five FBP isomorphs. The main reason for the observed ET rate changes is the net ES energy differences of Trp32 in each system.

energy gap $(-\Delta G^{\circ}_{T})$ is plotted. The observed bell-shaped ET rate dependence explains why for WT FBP the ET rate decreases while the total energy gap increases. This is one of the rarely observed cases when the ET process in a native protein occurs in the inverted region of the energy gap law.

4. Conclusions

We have discussed time-resolution potential of existing transient fluorescence spectroscopic methods and presented basic principles of the ultrafast fluorescence up-conversion technique. Details of our home-made femtosecond upconversion apparatus have been presented and its application on flavoproteins was demonstrated. Effects of ionic charges on ultrafast fluorescence dynamics were investigated.

We have shown that replacement of ionic amino-acid Glu13 and resulting modification of the electrostatic charge distribution in the protein binding pocket substantially alters the ultrafast fluorescence quenching dynamics and ET rate in the FBP. We have concluded that together with donor-acceptor distances, electrostatic interactions between ionic photoproducts and other ionic groups in the proteins are important factors influencing the ET rates in proteins.

References

- R. R. Duncan, A. Bergmann, M. A. Cousin, D. K. Apps, and M. J. Shipston: Journal of Microscopy, 215, 1 - 12, 2004.
- S. Saha, P. K. Mandal, and A. Samanta: Phys. Chem. Chem. Phys., 6, 3106 - 3110, 2004.
- M. A. Duguay, and J. W. Hansen: Appl. Phys. Lett., 13, 178 180, 1968.
- 4) J. L. Gu, J. L. Shi, G. J. You, L. M. Xiong, S. X. Qian, Z. L. Hua, and H. R. Chen: Adv. Mater., 17, 557 - 560, 2005.
- 5) H. Mahr, and M. D. Hirsch: Opt. Commun. 13, 96 99, 1975.
- S. Taniguchi, H. Chosrowjan, F. Tanaka, T. Nakanishi, S. Sato, Y. Haruyama, and M. Kitamura: Bull. Chem. Soc. Jpn., 86, 339 - 350, 2013.
- 7) T. Kakitani, and N. Mataga: J. Phys. Chem., 89, 8 10, 1985.

液中レーザーアブレーション法によるナノ粒子作製:溶融塩の効果

レーザーバイオ化学研究チーム

谷口誠治

1. はじめに

ナノ粒子は比表面積が大きく、またバルク材料とは異 なった特有の物性を示すことから、その応用に向けた研 究開発が様々な分野で進められている。近年では、金や 銅等、電気抵抗が小さな金属のナノ粒子は IC 基盤等に 微細配線を形成するためのインク等に用いられ、また白 金ナノ粒子の化粧品や食品への利用、磁性ナノ粒子を用 いたガン治療の研究等、多くの応用例が報告されている。 このことから、ナノ粒子の需要は今後飛躍的に増大する と予想されるため、生産性の高いナノ粒子作製法の開発 は重要な課題となっている。従来のナノ粒子作製法には、 金属の塊をボールミル等で粉砕する手法や、真空中で金 属を加熱して気化させたりスパッタする手法、常温の液 相中で金属塩を還元したり金属錯体を熱分解する手法 等があり、これまで数多くの製造プロセスが提案されて きたが、これらの手法では粒子サイズの微細化や均一化 に限界がある、原料や設備が複雑で高コストである、生 産性に乏しい等、多くの問題も残されている。これらの 問題に対し筆者は、ナノ粒子をより簡便に作製する手法 として液中レーザーアブレーション法を提案している。 液中レーザーアブレーション法とは、液相中でターゲッ トとなるバルク材料にパルスレーザー光を集光照射す ることにより、材料を直接的に原子化、プラズマ化する 手法であり、原子化された材料は周囲の溶媒により瞬時 に冷却され凝集、ナノ粒子化する(図1)。

筆者はこれまで、水あるいはアセトン等の有機溶媒を 用いて酸化チタンや鉄ナノ粒子の作製に関する研究を 行い、本手法により粒径 10~30 nm のナノ粒子を作製す ることに成功した¹³。しかしながら溶媒に水を用いた 場合には、ナノ粒子が水と反応してしまう場合や、凝集 性が強まる可能性がある。また有機溶媒を用いた場合に は、溶媒分子の熱化学反応により炭化物等が生成してし

図1 液中レーザーアブレーション法の原理図

まう可能性も指摘されている。このことから、本手法の 開発には、化学的により安定で、且つ凝集抑制作用を持 つ溶媒の選定が重要となる。

この点に関して最近、溶媒に溶融塩を用いた手法が注 目されている。溶融塩は高温(>300°C)でも化学的に 安定で、多くの物質を効率よく溶解させる等の特徴を持 っことから、チタンやタングステン等、高融点材料のナ ノ粒子化に適しており、またナノ粒子間に溶融塩分子が 入り込むことで凝集抑制作用を持つ可能性も指摘され ている。さらには、作製したナノ粒子懸濁液を常温まで 冷却することにより、ナノ粒子を固体中で保存できる

(保存中に凝集が起こる懸念がない)といった利点もあ る。このため溶融塩は噴霧熱分解法やプラズマ誘起電解 法等の各種ナノ粒子製造法の溶媒に利用され、一次粒径 が約 10 nm のナノ粒子の効率的な作製が可能になりつ つある⁴が、液中レーザーアブレーション法に応用され た例はない。そこで本研究では、溶融塩を溶媒に、ナノ 粒子関連研究の標準的な材料である金、および高融点材 料のチタンを用いてナノ粒子作製実験を行い、本手法に おける溶融塩の有用性について検討した。本稿では、溶 融塩中および水中で作製したナノ粒子の物性比較を行 った結果について報告する。

図2 溶融塩中レーザーアブレーション実験図

2. 実験

図2 に液中レーザーアブレーション実験の配置図を 示す。溶融塩には、塩化リチウム (LiCl) 、塩化カリウ ム (KCl) および塩化セシウム (CsCl) を重量比 1:1:1 で混合したもの(LiCl-KCl-CsCl)を用いた。融点は約 260℃である。溶融塩をセラミック製のるつぼに入れ、 ホットプレート上で加熱して溶融させた後、るつぼの底 部にターゲット材料(金、チタン)を配置し、上部から 焦点距離 15 cm のレンズにより集光したパルスレーザ ーを照射した。レーザー光源には、ナノ秒パルス YAG レーザー (Continuum Surelite I、波長 1064 nm、パルス幅 8ns (FWHM)、光径6mm (
、繰り返し10Hz)を使用 した。実験中はホットプレートの位置を常に移動させ、 ターゲット材料の同じ位置にレーザーが照射され続け ることがないようにした。試料に一定時間レーザー照射 を行った後、生成ナノ粒子を含む懸濁液を常温まで冷却 し固化させた。固化した試料は水を加えて水溶液とした 後、吸収スペクトル測定および動的散光乱法による粒径 分布測定を行った。吸収スペクトル測定には分光光度計 (HITACHI U-4100) を、粒径分布測定には粒度分布計 (HORIBA LB-550)を使用した。

3. 結果と考察

3.1 液中レーザーアブレーションによる金ナノ 粒子の作製:溶融塩の効果

溶融塩との比較のため、まず水中における金のレーザ ーアブレーション実験を行い、生成した金ナノ粒子の物 性を調べた。図3(左)に実験時の写真を、図3(右) に光強度 50mW (2×10⁹ J/cm² · sec · pulse) で 40 分、 75mW $(3 \times 10^9 \text{ J/cm}^2 \cdot \text{sec} \cdot \text{pulse})$ で15分、100 mW (4 ×10⁹ J/cm² · sec · pulse) で 15 分の照射実験を行った後 の試料の写真を示す。光強度 50 mW では試料は赤色を 呈したが、照射光強度が大きくなるに従い紫~青色に変 化した。試料の着色は生成金ナノ粒子の表面プラズモン 吸収帯に起因するものであり、粒径に依存性して吸収ピ ークがシフトし色の変化が起こる。図4に各試料の吸収 スペクトルを示す。ただし、照射光強度75mW、100mW の試料では生成粒子が凝集しスペクトルに散乱の効果 が見られたため、その効果はデータから差し引いてある。 いずれの試料にも表面プラズモン吸収帯が観測されて おり、そのピーク波長は50mW 照射時で523 nm、75 mW 照射時では550 nm あった。また 100 mW 照射時には幅 広い吸収帯が観測され。ピーク波長およびスペクトル形 状から生成ナノ粒子の平均粒径を求めると、50 mW 照 射試料(図中(a))では15 nm、75 mW 照射(図中(b))

図3 (左)水中における金のレーザーアブレーション
 実験時、(右)光強度 (a)50 mW、(b)75 mW、
 (c)100 mW での実験後の試料の写真

および100mW 照射試料(図中(c))ではそれぞれ約70 nm、200nmで、照射光強度の増大により生成粒子の粒 径が大きくなることが分かった。光強度による生成粒子 の粒径の変化は、1パルスあたりに原子化される金の濃 度(密度)に依存すると考えられる。つまり、高強度の レーザー照射により一度に多量の金がアブレートされ ると、プルーム内の金原子の濃度が増大するため原子同 士の衝突頻度が大きくなり、その結果粒子の大粒径化が 起こるものと考えられる。

溶融塩中におけるレーザーアブレーション実験結果 を以下に示す。用いた溶融塩は3g、水中で最も小粒径 のナノ粒子が得られた照射条件(光強度 50 mW)で実 験を行った。図5 に実験中(図5(a))および実験後(冷 却後、図5(b))の試料の写真を示す。融解した溶融塩が ナノ粒子の生成により赤く着色し、また冷却後固化した 試料もその着色を保持していることから、溶融塩中にお いてもアブレーションにより金ナノ粒子が生成するこ とが明らかとなった。図6(a)に、実験後の試料に水を加 え水溶液化した試料の吸収スペクトルを示す。プラズモ ン吸収帯のピーク波長は554 nm で、水中での結果(図 6(b))に比べて20 nm 長波長側にシフトした。ピーク波

図5 溶融塩中での金ナノ粒子作製実験での (a)レーザ 一照射時、 (b)照射後(常温)の試料の写真

長から求めた金ナノ粒子の平均粒径は約80 nm であった。

次に、溶融塩の凝集抑制効果について検討するため水 に重量比 10%の溶融塩を加えた水溶液を用い、常温で レーザーアブレーション実験を行った。その結果、光強 度 75 mW (15 分) での照射時にナノ粒子の生成が確認 された。試料の吸収スペクトルを図7に示す。水中での 実験結果 (図 3 (b)) に比べ、プラズモン吸収帯は明確に 観測された。ピーク波長 (554 nm) から求めた平均粒径 は約 50 nm で、水中(約 80 nm) よりも小粒径の粒子が 生成したことから、溶融塩が凝集抑制効果を持つことが 示唆される。一方で、光強度 50 mW の照射ではナノ粒 子の生成は確認できなかったことから、溶融塩の光吸収 により光強度がアブレーション閾値以下にまで低下し た可能性もあるため、今後その詳細について検討する必 要がある。

溶融塩中と水中での実験結果を比較すると、同じ光強 度では溶融塩中の方が大粒径の粒子が生成している。こ の主な要因には、おそらく溶媒の温度が関連しているも のと考えられる。金の融点はバシレク状態では 1064℃で あるが、粒径が数 10nm あたりから比表面積の増加によ り融点が低下しはじめ、粒径 2 nm では 400-300℃付近ま で低下する ⁹。このため溶融塩の融点(260℃)付近で は、一旦生成した小粒径のナノ粒子同士が融着し大粒径 化すると考えられる。一方で融着により粒径が大きくな るに従い融点も上昇するため、ある程度の粒径で粒子の 成長が抑制されるものと考えられる。現時点でその詳細

は明らかではないが、今後溶媒の温度と生成粒子の粒径 との関連性を明確にしていく。

3.2 溶融塩中レーザーアブレーションによる酸 化チタンナノ粒子の作製

酸化チタン(TiO2)ナノ粒子は、n型半導体の特性や紫 外線吸収能を有しており、太陽電池や紫外線遮蔽材、抗 菌材等数多くの応用例がある。筆者はこれまで、水中レ ーザーアブレーションによるチタンナノ粒子の作製を 行い、アブレートされたチタンが水あるいは水中の酸素 と反応して酸化され、酸化チタンナノ粒子として生成す ることを明らかにしたりが、溶融塩中での挙動は明らか ではない。実験には4.5gの溶融塩を用い、加熱融解し た溶融塩中にチタン板(純度99.5%、ニラコ)を配置し て光強度 200 mW (9×10⁹ J/cm² · sec · pulse) で 20 分レ ーザー照射を行った。金の実験時よりも光強度が高いが、 これはチタンの融点が金よりも高く(~1800℃)、チタ ンのアブレーションにより多くのエネルギーを必要と するためである。同様に水中(5ml)でも同照射条件で 実験を行い、結果を比較した。図8(a)、(b) に水および 溶融塩中の実験で得られた試料と、実験後のチタン板の 写真をそれぞれ示す。ただし溶融塩中の試料は実験後、 水を加え水溶液化したものである。試料はいずれも白濁 化しており、レーザー照射により白色の酸化チタンナノ 粒子が生成したことがわかる。実験後のチタン板は水中 では表面の黒化が見られる。これはチタン表面で低次の 酸化チタン(TinOn-1 (n=1~10))が生成するためで ありの、レーザー照射面でチタンの水あるいは酸素によ る酸化反応が起こることを示す。一方、溶融塩中ではチ タン表面の黒化は顕著ではない。溶融塩は分子中に酸素 を含まず、また高温状態であるため水中に比べ溶存酸素 量も低いと考えられることから、溶融塩中ではレーザー 照射によりチタン (Ti) 粒子が生成し、その後加えた水 や空気中の酸素により酸化されたものと考えられる。生 成粒子の粒径計測の結果を図9に示す。酸化チタンナノ 粒子は表面プラズモン吸収を持たないため、計測には粒 度分布計を用いた。水中での生成ナノ粒子の平均粒径は

98 nm (変動係数 45.2) であるのに対し、溶融塩中での 粒子は平均粒径 2.9 µm (変動係数 29.1) と大粒径化して いることがわかった。酸化チタンナノ粒子には凝集性が あり、水中では粒径数 nm~数 10 nm の 1 次粒子が凝集 して 2 次粒子を形成するが、溶融塩中では上記したよう に酸化チタンよりも反応活性が高いチタン粒子が先に 生成すると考えられるため、溶融塩中で粒子間の凝集が さらに進んだものと考えられる。このメカニズムの詳細 を明らかにするためには、溶融塩が融解した状態(高温 状態)で生成粒子の物性を観測する必要がある。今後装 置作製を含めさらに検討を進める予定である。

4. まとめ

本研究では、溶融塩(LiCl-KCl-CsCl)溶媒中でレーザ ーアブレーション法による金およびチタンのナノ粒子 作製実験を行い、水中での実験結果と比較した。その結

図8 (a)水中、(b)溶融塩中でのレーザーアブレーション実験後の懸濁液試料とチタン板の写真

果、溶融塩中においても金および酸化チタンナノ粒子が 生成することを確認した。一方、金、酸化チタンとも溶 融塩中の方が生成粒子の粒径が大きくなることがわか った。金の場合には、溶融塩中では高温下(~300℃) でナノ粒子同士が融着し大粒径化すると考えられ、酸化 チタンの場合には、溶融塩中で先にチタンナノ粒子が生 成した後凝集して大粒径化し、その後水や酸素による酸 化が起こる可能性が高い。今後、溶融塩中でのナノ粒子 物性について実験装置の作製を含めて検討を進め、その 生成メカニズムを明らかにする予定である。

謝辞

本研究の遂行にあたり平成25年度大阪大学レーザー エネルギー学研究センター共同利用・共同研究(自由研 究課題型B2-20)の支援を得た。

参考文献

- 谷口誠治, 佐伯 拓, 岡田竹弘, 古 隆志: レーザー学会第
 421 回研究会報告「21 世紀のレーザー技術」, RTM-11-56, 25-30, 2011.
- T. Okada, T. Saiki, S.Taniguchi, T. Ueda, K. Nakamura, Y. Nishikawa and Y. iida: ISRN Renewable Energy (Open access journal), 2013, 827681, 2013.
- 3) 谷口誠治, 岡田竹弘, 佐伯 拓, ILT2013 年報, レーザー技術 総合研究所, 2013.
- 4) 伊藤靖彦, 後藤琢也, 河村博行, 特許第4688796 号, 2011.
- 5) N. Wada: Chem. Eng., 9, 17-21, 1984.
- 谷口誠治,古河裕之,佐伯 拓, ILT2011 年報,レーザー技術 総合研究所,2011.

理論・シミュレーションチーム

砂原 淳

1. はじめに

現在量産されている半導体の最も細い回路線幅は22 nm(ハーフピッチ)であるが、それらはArFレーザー(192 nm)を光源として採用し、液浸技術により屈折率を大き くする露光方式を用い、さらに二重露光を行う複雑な行 程で製造されている。しかしながら、この方法で今後の 回路線幅16 nmの半導体リソグラフィーに対応するため にはさらなる多重露光技術が必要とされ、半導体製造コ ストの増大が懸念されている。そこでダブルパターニン グなどの複雑な行程が不要で、11 nmプロセスよりもさ らに微細な回路線幅の半導体まで製造可能である波長 13.5 nmの極端紫外線 (Extreme Ultra-Violet: EUV) が半 導体リソグラフィー用次世代光源として期待されてい る。EUV光源に求められるのは高い発光効率、高出力、 高い安定度である。2014年4月のSPIE advanced lithography会議において、世界の二大EUV光源メーカー、 即ち、米国CYMER社と日本のGigaphoton社からそれぞ れ開発中のEUV光源の出力について報告があり、 CYMER社は70W、Gigaphoton社は43WのEUV出力達成 を報告した。これらは従来のEUV出力に比べると飛躍 的に出力が向上しているが、まだ量産光源の目標である EUV出力180Wには到達していない。

我々はギガフォトン社と協力して、EUV出力180 Wを 達成すべく、光源プラズマの最適化研究を行っている。 現状のレーザー生成スズプラズマEUV光源のEUV出力 を基準として、レーザー出力を3倍、レーザーからEUV 光への変換効率を2倍にできれば、EUV出力を現在の6 倍にすることができ、180 Wを超えるEUV出力が可能に なると考えている。より具体的にはEUV変換効率は6% 以上が我々の目標である。6%以上のEUV変換効率が達 成できれば、EUV光源としてのスズプラズマの最適化 はひとまず一段落する。

これまでに我々はレーザー生成スズプラズマに注目 し、EUV発光の物理探究とプラズマ条件の最適化を行 って来た。平成15-19年度に阪大レーザー研を中心とし て実施された文部科学省リーディングプロジェクトに おいて、レーザー生成スズプラズマからのEUV発光効 率3%を実証した後、炭酸ガスレーザーの優位性を発見 し、スズドロップレットに対してダブルパルス照射を行 い、EUV変換効率4%を実証するなど、レーザー生成ス ズプラズマからのEUV発光の高効率化の指針を世界に 先駆けて見出し、EUV発光の物理機構解明と高効率、 高出力化に向けたプラズマ条件最適化において実績を 挙げて来た。現在、世界のEUV光源研究は2017年頃の 量産開始を目標に、炭酸ガスレーザーを用い、スズドロ ップレットにダブルパルス照射を行う方式を中心に研 究が進められている。この方式でさらなる高効率化及び 高出力化を目指す上で重要なのは、スズドロップレット に最初のレーザーを照射したときのドロップレットの 挙動、プラズマ生成過程の解明・制御と、その後の炭酸 ガスレーザー照射によるEUV発光の高効率化である。 スズドロップレットにプリパルスを照射後、生成したプ リプラズマに炭酸ガスレーザーを照射するところまで の全ての過程をトータルに最適化するのが本研究目的 である。本稿では、スズドロップレットのダイナミクス を流体シミュレーションにより探求することを目標と して行ったH25年度の研究成果についてまとめる。スズ ドロップレットの挙動とプラズマ生成過程は未だよく 判っていない事が多く、その計算も物理的、数値計算的 な困難さがあり、定性的な計算のみであったのが現実で あるが、我々は開発した輻射流体コード(STAR-2D)^{1)を} 用いてドロップレットの膨脹を計算した。その結果、高 効率化を目指したスズプラズマの最適化に有用な知見 が2次元シミュレーションにより得られた。次章で詳し

く述べる。

2. スズドロップレットの挙動

現在、我々が考えているEUV光源は図1に示すように、 ダブルパルスを用いる2段階照射方式である²⁾。まず、 スズドロップレットに最初のレーザー (プリパルス)を 照射する。プリパルスの波長 は1 µmを想定している。

スズドロップレットへのプリパルス照射によりプリ プラズマが生成され、数100 ns から数 µs の時間をかけ て、ドロップレットの典型的なサイズ(直径)20 µm か ら数100 µm までプラズマが膨脹する。膨脹したスズプ ラズマに対して、2 段階目のメインパルスである炭酸ガ スレーザーを照射し、EUV 光を発生させる。この時、 一番大事な事は炭酸ガスレーザーの吸収率を如何に高 めるか、ということであり、スズのプリプラズマが充分 な密度スケール長を有していることが必須である。具体 的には、炭酸ガスレーザーの充分な吸収を期待するには 密度スケール長は典型的な値として 200 µm 以上が必要 である。そのため、プリプラズマの生成、即ちプリパル スレーザー照射されたスズドロップレットの挙動を密 度分布を中心に解析し、挙動を理解することにより、 EUV 放射に最適なプリプラズマ生成条件を明らかにす ることが出来る。しかしながら、典型的なプリパルスレ ーザー照射条件において、スズドロップレットは高密 度・低温のいわゆる Warm Dense Matter 領域に入り、非 理想的なプラズマとしての状態方程式の影響を強く受 けることになる。我々は米国のDr. R. Moreの協力を得 て、高精度な状態方程式を輻射流体コードに導入し、ス ズドロップレットにプリパルスが照射される際のスズ ドロップレットの挙動を計算した。H24年度は一次元的 計算を行い、プリパルスレーザー照射されたスズドロッ プレットが気体と液体の混合状態になることを見いだ した。H25年度はさらに、2次元計算を行うことで、プ リパルスレーザーを照射されたスズドロップレットの 実際の挙動を解析した。プリパルスは従来ナノ秒パルス が用いられて来たが、ギガフォトンにより、ピコ秒パル スがより大きな EUV 変換効率を与えることが見いださ れて来ており、ここではピコ秒プリパルスを中心に記述 する。図2に典型的な軸対称2次元計算のスズドロップ レット内部の圧力と密度の時間発展を示す。図2ではド ロップレットに対し、レーザーは右から照射される。そ の際、レーザーのスポットサイズはドロップレットと同

図2 ピコ秒プリパルスを照射されたスズドロップレットの2次元計算結果。それぞれ(a) レーザー照射後 100 ps、(b) レーザー照射後 5 ns、(c) レーザー照射後 10 ns、(d) レーザー照射後 60 ns である。

じ直径 20 µm である。レーザー波長は 1.06 µm、レーザ 一強度は5×10¹² W/cm²、パルス幅は15fs である。ドロ ップレットの右からレーザーを照射し、最初の15 fsの レーザー照射により、ドロップレット表面に最高100eV 程度のプラズマが生成する。そのため、図2(a)のレーザ 一照射後100psの圧力分布に見られるように、レーザー 生成プラズマの高圧力でドロップレット表面に右から 衝撃波が形成される。衝撃波はドロップレット中心部に 向かって進行し、中心部である程度収束した後に、レー ザー照射と反対側に伝播し、ドロップレットを通り抜け る。衝撃波がドロップレット中心から広がりながら伝播 する際に、ドロップレットの密度は膨張により希薄にな り、レーザー照射後5nsの図2(b)ではドロップレット中 心部に低密度のボイドを形成する。このとき衝撃波によ って圧縮されるごく一部の領域を除き、スズドロップレ ットは固体密度よりも密度が小さく、数千度の比較的温 度が低い状態、即ち気体と液体の混合領域に入る。さら に時間が経過し、図2(c)に示すレーザー照射後10 ns で は衝撃波は既にドロップレットのレーザー照射面とは 反対の側から抜けているが、ドロップレット中心部のボ イドは益々大きく成長し、ドロップレット全体が気体と 液体の混合状態となる。この気体と液体の混合領域は密 度が圧力及び音速が極端に小さいという特徴を持ち、音 速の小ささから、ボイドの領域が広がるのを補償するだ けの流体運動が生じない。そのため、スパレーション

(spallation) と同様の現象が生じている。さらに時間が 経つと、図 2(d)に示すようにレーザー照射後 60 ns 後に は高密度のシェルと低密度の中空部分の 2 層構造を保 ったまま、スズドロップレットは膨張し、スケールが大 きくなっていくことが解った。

3. まとめ

スズドロップレットにレーザーを照射する際のドロ ップレットの挙動を中心に、次世代半導体リソグラフィ ーに必須である高効率・高出力光源の開発に向けてシミ ュレーション研究を行った。今後は分子動力学的手法を 用いてスズドロップレットの挙動を計算し、流体計算と 比較するなど、スズの気液混合状態の物性についてさら に深く研究を進める予定である。また、これらの知見を ベースに、スズドロップレットから EUV 光放射に至る 全ての過程を統合したシミュレーションを行い、高効率 EUV 発光の条件を見いだす予定である。

参考文献

- Sunahara, A. Sasaki, H. Tanuma, K. Nishihara, T. Nishikawa, F. Koike, S. Fujioka, T. Aota, M. Yamaura, Y. Shimada, H. Nishimura, Y. Izawa, N. Miyanaga, and K. Mima: J. Plasma Fusion Res., 83, 920-926, 2007.
- K. Nishihara, A. Sunahara, A. Sasaki, et al.: Phys. Plasmas, 15, 056708, 2008.

レーザー生成高速電子・イオンを用いたプラズマ加熱

理論・シミュレーションチーム

砂原 淳

1. はじめに

大阪大学では高速点火実験(FIREX実験)を推進して おり、爆縮プラズマを核融合点火温度である5 keVに加 熱することを目指して研究が進んでいる。目下の課題は 加熱効率、即ち超高強度レーザーから爆縮プラズマに与 えられるエネルギーの割合の更なる向上である。FIREX 実験で用いられる典型的なターゲットは図1に示すよう に、加熱用超高強度レーザーの通り道を真空に保つため のプラズマよけであるコーンターゲットが核融合燃料 球に取り付けられた形となっている。最初に爆縮レーザ ーにより燃料球を圧縮した後、超高強度レーザーをコー ンターゲット内部先端部に集光し、高速電子を発生させ、 高速電子により爆縮プラズマコアを加熱する。高速点火 方式が中心点火方式など他の点火と比べて優位となる ためには、加熱効率が流体力学的効率の理論限界である 10%以上にならないといけない。しかし、残念ながら加 熱レーザー入射から爆縮コア加熱までの加熱効率は図1 に示すように現状1%程度と見積もられている。また、 この低い加熱効率のために、高速点火時の爆縮コアの温 度も現状では数100eV程度しか上昇していないことが 実験的に明らかになってきている。加熱効率は式(1) に示すように次の4つのファクターの積で考えることが

できる。

加熱効率

- = (1)レーザーから高速電子への変換効率
- ×(2)コーンターゲット先端部(チップ)の透過率
- ×(3)コーン先端からコアへの到達効率
- ×(4)爆縮プラズマコアへのヘネルギー付与効率

加熱効率を最大化させるためには、式(1)の右辺の4 つの項をそれぞれ最大化させる必要がある。また、従来 の高速電子をベースとした高速点火スキームの研究に 加え、爆縮コアの加熱温度を飛躍的に向上させる方法と して高速イオンの利用についても平成24年度に提案し、 研究を進めて来ている。高速イオンの利用を含め、高い 加熱効率達成を目指すためには式(1)に含まれている 物理要素のそれぞれを理解し、全要素が統合された評価 ツールが有用である。そこで、我々は1次元で統合加熱 コードを開発し、平成25年度は高速電子や高速イオン の発散角を考慮するための計算幾何形状の変更等、さま ざまな改良を行い、現状の実験の解析に用いることが可 能なレベルに至った。次章で詳細を記述する。

図1 爆縮コア加熱の加熱効率を決める4つの要素の概念図

2. 一次元高速点火加熱評価コード

開発したコードの幾何形状は一次元で、前章の式(1) の全要素を考慮したものになっている。即ち、高速電子、 高速イオンの発生効率、高速電子、高速イオンのプラズ マ中における阻止能及びエネルギー付与¹²⁾、爆縮プラズ マの加熱、帰還電流による加熱、輻射エネルギー損失、 プラズマの加熱に伴う電離度の変化である。平成25年度 は高速電子及び高速イオンの発散角を考慮すべく、図2 に示すようなコーン形状の計算領域を扱うことができ るようにコードを書き直した。その結果として、高速電 子及び高速イオンの発散角をそれぞれ考慮することが 可能になり、現実のFIREX実験の解析に用いることが可 能になった。

図 2 改良した一次元加熱評価コードの計算領域 の模式図. 高速電子及び高速イオンの発散 角がそれぞれ別の値として考慮できるよう になっている。

図 2 には計算条件として与えるべきパラメータをまと めてあり、レーザー条件として強度 I_{L} , パルス幅 τ_{L} 、 波 長 λ_{L} 、スポット径 D を与える。このスポット内で高速 電子及び高速イオンが発生し、それぞれの発散角 θ_{e} と θ_{i} で爆縮コア中を広がりながら通り、爆縮コアを加熱する。 爆縮コアの設定パラメータは密度 ρ 、初期電子温度 T_{e} 、 初期イオン温度 T_{i} である。これらを設定することによ り、高速電子及び高速イオンの発生に関するモデルを用 いて、図 3(a)に示すようにレーザーからそれぞれの入射 粒子への変換効率や、図3(b)に示す高速イオンのエネル ギーなど、入射粒子のエネルギーが求められ、それらの 入射粒子のプラズマ中における阻止能計算によりコア 加熱が計算される。

図 3(a) CD プラズマを想定し、高強度レーザーから 6価の炭素イオンへのエネルギー変換効率を 算出した例。それぞれ相互作用領域の密度に 応じて(1)0.1×臨界密度,(2) 臨界密度、(3)相 対論的臨界密度(直線偏光)、(4)相対論的臨 界密度(円偏光)に相当する。今回の計算で は(3)を採用している。

図 3(b) 図 3(a)に相当する6価炭素イオンの粒子エネ ルギー.(1)~(4)は相互作用領域の密度で、図 3(a)と同じ定義である。

3. 計算例

図4に爆縮コア加熱の計算例を示す。ここでは高速電 子の発生モデルとして、Wilksによるスケーリング則を 用いたものを図4(a)に、Wilksよりも勾配温度が低くなる 傾向をもつHainesモデルを用いて高速電子の発生を計 算した結果を図4(b)にそれぞれ示す。爆縮密度は全て、 現在のFIREX実験における爆縮を想定して10 g/cm³とし ている。実線は高速イオンの加熱への寄与を考慮したも ので、破線は高速電子のみの加熱の場合である。レーザ 一強度は1×10¹⁹ W/cm²、1×10²⁰ W/cm²、1×10²¹ W/cm² の3つの場合を想定している。パルス幅は1.5 ps, スポッ トサイズは50 µmの、発散角は電子を全角80度、高速イ オンを全角30度とした。爆縮コアの初期温度は0.5 keV である。図4(a)より、Wilksモデル高で速電子の発生を考 えると、レーザー強度が10¹⁹ W/cm²でスポットサイズが 60 μmΦ、高速電子の発散角が全角80度の現状の実験パ ラメータでは高速電子のみの加熱の場合には1 keVに到 達しないことがわかる。また、高速イオン加熱を考慮し ても1keVを僅かに超える温度しか達成できない。5keV 達成には1 × 10²¹ W/cm²のレーザー強度が必要であるこ とが解る。一方Hainesのモデルで評価した場合にも電子 加熱の寄与が若干増加するだけで、5 keVの爆縮コア加 熱達成には1 × 10²¹ W/cm²レベルのレーザー強度が必要 である。

4. まとめ

大阪大学が中心になって進めている高速点火原理実 証実験(FIREX-I)の目標である 5 keV のコア点火温度を 達成するには現在の実験のパラメータでは困難であり、 式(1)に示した加熱効率を決定づける要素を大幅に改 善しなくてはならないことを示した。具体的には発生す る高速電子及び高速イオンの発散角の抑制と高速電子 の勾配温度の抑制、レーザーエネルギーの増加である。 高速電子の発散角抑制に対しては磁場による高速電子 ガイドなど、基礎実験が進んで来きている。また、高速 電子の勾配温度に関しては、何が勾配温度を高くしてし まうのかを理解するための実験が行われて解析が進ん

図4 計算結果.. (a) Wilksモデルにより高速電子の発 生を考慮したもの (b) Hainesモデルにより高速 電子の発生を考慮したもの.実線は高速イオ ンと高速電子の両者の寄与を考慮したもので、 破線は高速電子のみの加熱を考慮している。

でいる。具体的にはコーン形状によって勾配温度が変化 するという実験結果について集中的に解析が進んでお り、今後の進展が期待される。

参考文献

- J.F. Ziegler, J.P. Biersack, M.D. Ziegler: SRIM-The Stopping and Range of Ions in Matter, SRIM Co., 2008.
- J.F. Ziegler: Helium : stopping powers and ranges in all elemental matter, Pergamon Press, New York, 1977.

レーザー核融合炉壁のアブレーション

理論・シミュレーションチーム

砂原 淳、影山 慶¹、高木一茂¹、籔内俊毅¹、田中和夫¹ ¹大阪大学大学院工学研究科

1. はじめに

核融合炉工学を目指した研究が益々重要になって来 ている。特に、第一壁の問題はレーザー核融合、磁場閉 じ込め型の方式を問わず重要な研究課題である。大阪大 学では図1に示すように、ターゲットにレーザーを照射 してプラズマプルームを発生させ、そのプルーム同士を チャンバー中心付近で衝突させることにより、実際の核 融合炉壁からのプラズマ発生とダイナミクスを現在の 実験室レベルで模擬する実験を行っている。実際の炉壁 は X 線やアルファ粒子、プラズマデブリなどによる熱 インパルスを受けるが、本実験は X 線や粒子の代わり にレーザーを模擬熱源として用いて壁材料に熱負荷を 与える。レーザーを用いることで、熱入力条件を比較的 広い領域で容易に変化させられる。また、様々な物質を ターゲットとして用いることが容易であり、多数の実験 データにより定量的な物理モデリングが可能である等、 多くの利点がある。現在までに多数の実験データが蓄積 されて来ており、我々は理論・シミュレーション手法を 用いてこれらのレーザー生成プルームの発生、膨張、衝 突のダイナミクス、壁(材料)のアブレーションを定量 的に理解し、実際の核融合炉壁の熱応答問題に対する知 見を得ることを目指して、シミュレーションコードの開 発と実験解析を行っている。平成 25 年度にはレーザー 核融合炉炉心プラズマから発生するアルファ粒子によ る核融合炉壁の加熱及びアブレーションを計算し、壁表 面が加熱され、噴き出した後、入射してくるアルファ粒 子を減速し、プラズマガスカーテンとして機能させるこ とで、壁への熱負荷を抑制できることなどを見いだした。 これは図 1 のプラズマプルーム生成領域のモデリング に相当する。次章で詳細を示す。

2. アルファ粒子による壁表面の加熱

レーザー核融合では炉の中心部で核燃焼が生じ、 そこから核反応生成物としてのアルファ粒子を中 心として、様々な電離状態のイオンが核融合炉壁へ 入射する。そして、それらは壁入射後、表面付近で減速 され、壁に対してエネルギーを与える。その結果として、 壁表面は加熱され、昇華温度を超えるとアブレーション する。実際の核融合炉設計においては、核融合炉の第一 壁はそれら入射粒子の加熱に耐え得る材料の選択が重 要であり、さまざまな核融合炉壁材料がどのような熱特 性を示すのかを理解することが重要である。我々はレー

図1 レーザー核融合炉壁アブレーションの模擬実験

図2 核融合炉を想定した計算条件

ザー核融合の炉心プラズマを想定し、発生するアルファ 粒子による核融合炉壁の熱応答を解析した。計算条件と して核融合炉壁材料の候補の一つである炭素を採用し、 アルファ粒子のエネルギーは100 keV として、6 ns の間、 アルファ粒子が炭素壁に入射するとした。核融合炉は4 mの半径を想定し、典型的なアルファ粒子の入射強度を 1.6×10⁹ W/cm² とした。図2に炭素壁の条件を示す。

計算は1次元ラグランジアン流体スキームをベース にしており、図2に示すように炭素壁の左側から入射す る。入射したアルファ粒子の炭素による阻止能¹²⁾を毎 ステップごとに計算し、減速に応じて運動エネルギーの 減少分を炭素ターゲットに熱エネルギーとして付与す る。図3に6nsまでの時間発展を2nsごとに示す。加 熱されたカーボン壁表面はアブレーションにより固体 密度よりも3桁程度低い気体となってカーボン壁から 噴き出す。

ここで特徴的なことは、噴き出したカーボンがアルフ ア粒子を減速し続けるため、しばらくすると、壁本体へ の熱流は減少することである。また、これとは反対に、 噴き出した炭素はアルファ粒子により加熱されつづけ るため、温度は時間的に増加する。図3(c)のアルフ ア粒子入射開始後6nsの密度分布を見ると、炭素はごく 表面のみがアブレーションされており、噴き出していな い部分は固体密度を保持している。また、噴き出した炭 素は真空側に向かって温度が増加していることがわか る。これは噴き出した炭素によるアルファ粒子の遮蔽、 即ち、ガスカーテン効果を示している。また、6ns では 初期炭素壁表面から0.5 µmの深さまでが昇華点を超え ている。

一方で、固体密度の1/1000の領域は壁から70 µmの

図3 アルファ粒子入射によるカーボン壁のアブレー ションの計算結果。(a)アルファ粒子入射開始後2 ns,(b)アルファ粒子入射開始後4 ns,(c)アルファ 粒子入射開始後6 nsのそれぞれ密度、温度分布。 密度はカーボンの固体密度で規格化されている。

距離まで噴き出しており、核融合炉の典型的なショット 間時間である 0.1 秒の間には 1000 m 以上の距離を進む 事ができることから、噴き出し気体は数 m の半径を持 つ核融合炉壁内部に十分均一に膨張できることを示し

3. まとめ

核融合炉壁へのアルファ粒子照射による壁の温度上 昇をカーボン壁に対して見積もった。噴き出した気体の 温度は最高で数 eV まで上昇しており、今後は気体とプ ラズマの両方を精度よく扱う阻止能、熱伝導及び状態方

参考文献

- J. F. Ziegler, J. P. Biersack, M. D. Ziegler: SRIM-The Stopping and Range of Ions in Matter, SRIM Co., 2008.
- J. F. Ziegler: Helium : stopping powers and ranges in all elemental matter, Pergamon Press, New York, 1977.

レーザーピーニング統合シミュレーションによる塑性圧縮応力の評価

理論・シミュレーションチーム

古河裕之、部谷 学¹、中野人志² ¹大阪産業大学工学部 ²近畿大学理工学部

1. はじめに

レーザーピーニングとは、図1に示すように、レーザ ーアブレーション誘起衝撃波によって金属を塑性変形 させ、加工硬化や圧縮残留応力を付与し、金属部品の高 強度化、長寿命化を実現できる技術である。既に、宇宙 航空産業、原子力産業に実用化されている。また、非接 触でかつ局所的に表面処理でき、プロセスの再現性が高 く、装置が小型で可搬性に優れているため、精密部品(複 雑形状、小型、薄板) への応用が期待されている。

図1 レーザーピーニングの概念図

レーザーピーニングを用いて材料に処理を施す場合、 各種材料にあったレーザー条件(レーザー強度、パルス 幅、レーザー波長、パルス波形等)で処理する必要があ る。適切な衝撃波圧力を発生させ、金属材料の降伏応力 を超えた領域で塑性変形を起こさせる。降伏応力は、材 料に固有の値を取る。レーザー条件の最適化のため には、シミュレーションにより、レーザーと金属材 料、及びプルームの相互作用を正確に理解し、アブレ ーション生成プルームの圧力、固体中の残留圧縮 応力等を詳細に評価する必要がある。 レーザーピーニングのシミュレーションとしては、有 限要素法を用いた応力解析が殆どである¹⁾。プルームの 圧力は、外部からの境界条件として与えられるのみであ り、レーザーと物質の相互作用等は計算に含まれない。

レーザー生成プルームの解析のモデルとして良く使 われるものに、Fabbroのモデルがある²⁾。このモデルの 詳細は3章で述べるが、レーザーと物質の相互作用を詳 細に取り扱ったものではない。レーザー波形が矩形波で あることなど、一定の条件を満たす場合にはFabbroの モデルを用いてプルームの圧力を解析的に求めること ができる。文献3では、レーザーの波長を1064 nm と し、レーザーの照射強度とパルス幅を変え、10 µm 厚 さのアルミニウム薄膜の裏面の圧力の最大値を測定し ている。文献3のFig.8において、実験で得られたレ ーザー照射強度の関数としてのアルミニウム薄膜の裏 面の圧力の最大値と、Fabbroモデル中のαパラメータ ー(プルーム中の内部エネルギーが熱エネルギーに変わ る割合)を0.2 として得られた圧力値の比較が行われ ている。両者は良く一致している。

レーザーと物質の相互作用、材料中の応力生成・伝搬 を統合的に取り扱った数少ない研究の1つとして、Ocana 等によるものがある⁴。これはLSPSIM、HYDRA、 HARDSHOCK という3 つのコードで構成される統合 シミュレーションコードを用いた研究である。レーザー と物質の相互作用はHYDRAで求め、その結果を LSPSIM に入力する。LSPSIMでは、プラズマが材料に 与える圧力をFabbro モデルをベースに計算している。 HARDSHOCK で、応力計算を行う。Ocana 等の研究に より、レーザーと固体の相互作用等により、固体内に発 生する熱が応力の発生及び伝搬に影響を与える、ことが 示唆された⁴。Ocana 等の研究では、レーザーと物質の 相互作用計算において、「初めにプラズマ有き」を仮定 しており、固体から液体、液体から中性気体、中性気体 から部分電離プラズマへの相変化は含まれていない。レ ーザーピーニングで用いられるレーザーパラメーター では最大でも電子温度は数万度程度であり、これは温度 換算した気化熱と同じ程度である。よって、相変化の効 果は重要と考えられる。

本研究における新規性を述べる。

- 固体から液体、液体から中性気体、中性気体から部 分電離プラズマへの相変化の効果を取り入れた1 次元のレーザーピーニング統合シミュレーション コードを開発した^{5,6}。
- レーザー照射から固体内部の応力の分布も評価まで、統合的に計算できる。
- 真空中、大気中でレーザーを照射する場合のみでなく、水中でレーザーを照射する場合、ガラスでプル ームを閉じ込める場合の計算も可能である。

本研究で開発した統合シミュレーションコードによ り得られた、レーザー照射強度の関数としてのプルーム の圧力の空間平均の最大値は、α=0.2 と仮定して Fabbro モデルにより得られたプルームの圧力値と良い一致を 示した。

本研究において、塑性圧縮応力の計算のモデリングを 行い、レーザー照射から塑性圧縮応力生成まで統合シミ ュレーションを行った。固体表面からサブ mm の深さ のところに、数百 MPa から 1.6 GPa 程度の塑性圧縮応 力が生成される、という結果を得た。

第2章では、シミュレーションコードの概要について 述べる。第3章では、Fabbro モデルについて考察する。 第4章ではレーザー生成プルーム、第5章では塑性圧縮 応力の評価について述べる。第6章は結言である。

2. 開発したシミュレーションコード^{5.0}

図2は、開発した統合シミュレーションコードのフロ ーチャートである^{5,6}。原子モデルコードを用いて、原 子のエネルギー準位、ポピュレーション、電離度などの データを様々な温度密度で求める。そのデータを状態方 程式コードに入力し、圧力、比熱等を求める。原子のエ ネルギー準位、ポピュレーション、電離度などのデータ をスペクトルコードに入力し、X線の放射係数、吸収係 数等を求める。圧力、比熱、X線の放射係数、吸収係数 等のデータをテーブル化し、Laser Ablation Peening Code (LAPCO)に入力し、固体金属の温度上昇、固体中の応力 の分布、相変化、流体運動、放射輸送等の計算を行う。 図3は、LAPCOのフローチャートである。

図2 統合シミュレーションコードのフローチャート

図3 LAPCOのフローチャート

開発した統合シミュレーションコードに関して、レー ザーピーニングのシミュレーションのプロセスに沿っ て説明する。

- (1) 計算の対象となる金属に関して、原子モデルコード を用いて、電離度、ポピュレーション、エネルギー 準位などを求める。このデータは、入力したレーザ ーエネルギーの内、励起、電離に使われるエネルギ ーの割合の評価や、中性気体から部分電離プラズマ への相変化を記述する際に、極めて重要となる。
- (2) 電離度、ポピュレーション、エネルギー準位などの データを状態方程式コードに入力し、圧力、比熱な どを求める。これは、プルームの圧力の評価、熱エ ネルギーの評価にそのまま反映される。
- (3) 電離度、ポピュレーション、エネルギー準位などの データをスペクトルコードに入力し、X 線の放射 係数、吸収係数を求める。
- (4) (1)-(3) で求めた「電離度、圧力、比熱、X 線の放 射係数、吸収係数」のデータを「LAPCO」に取り 込む。さらに、レーザーのパラメーター、金属の厚 み、初期温度、閉じ込め物質の種類、厚み、初期温 度などを入力し、流体シミュレーションを開始する。 入力可能なレーザーパラメーターを、以下に記す。 (4-1) ピーク強度 (4-2) パルス幅 (4-3) 波長 (4-4) パルス波形 パルス波形は、ソースコードを書き換えることによ り、任意の波形に対応可能である。
- (5) LAPCO に含まれている主な物理を、以下に記す。 (5-1) 自由電子の逆制動放射、共鳴吸収、束縛電子 によるレーザーの吸収⁷。

(5-2) 固体、液体、中性気体、部分電離プラズマの 相変化8。

(5-3) 電子、イオンの熱伝導、および、電子--イオ ン間のエネルギー緩和。

- (5-4) 固体中の衝撃波の伝搬。応力生成。
- (5-5) 金属材料から閉じ込め材料への熱伝達。
- (5-6)X 線放射輸送過程。

図 4は、本シミュレーションコードにおける geometry である。 左から右 (z軸の負から正) に向かってレーザ ーが照射され、物質は右から左(z軸の正から負)に閉 じ込め媒質に向かって噴き出す。本シミュレーションコ ここで P は圧力であり、状態方程式から得られる?。

ードでは、物質の相構造は、基本的(定常的)には、右 から固体、固体と液体の混合領域、液体、液体と気体の 混合領域、気体(部分電離プラズマ)と連続的に分布し ているとしている。閉じ込め媒質中では、レーザーは吸 収されない、と仮定している。

図4 本シミュレーションコードにおける geometry

変位量 u と弾性歪 & の関係は、次式で表される。

$$\varepsilon_{e}(z,t) = \frac{\partial u(z,t)}{\partial z}$$
(1)

弾性応力 σ_e と弾性歪 ε_e の関係は、次式で与えられ る%

$$\sigma_e(z,t) = (\lambda + 2\mu) \varepsilon_e(z,t)$$
⁽²⁾

ここで*A*, *µ*はラメ定数であり、ヤング率 *E*、ポアソン 比 v を用いて、次のように表される⁹。

$$\lambda = \frac{\nu E}{(1+\nu)(1-2\nu)} , \quad \mu = \frac{E}{2(1+\nu)}$$
(3)

(1)式の両辺を時間微分することにより、弾性歪 & と 固体内部の場の速度 v が関係づけられる。

$$\frac{\partial \varepsilon_{e}(z,t)}{\partial t} = \frac{\partial}{\partial t} \frac{\partial u(z,t)}{\partial z} = \frac{\partial}{\partial z} \frac{\partial u(z,t)}{\partial t} = \frac{\partial v(z,t)}{\partial z}$$
(4)

場の速度 v は、次の運動方程式を解いて得られる。

$$\rho(z,t) \left[\frac{\partial v(z,t)}{\partial t} + v \frac{\partial v(z,t)}{\partial z} \right]$$

$$= \frac{\partial}{\partial z} \left[\sigma_e(z,t) + \sigma_p(z,t) - P(z,t) \right]$$
(5)

塑性圧縮応力 σ_p は、塑性歪 ϵ_p を用いて次式で表さ れる 9 。

$$\sigma_{p}(z,t) = 2\mu \varepsilon_{p}(z,t) \tag{6}$$

塑性歪 & については、次のようにモデリングした⁹。

$$\frac{\partial \varepsilon_{p}(z,t)}{\partial t} = -\frac{2}{3\lambda + 2\mu} \frac{\partial P(z,t)}{\partial t} \quad for \quad -\sigma_{e} > \sigma_{Y}$$
$$= 0 \qquad \qquad for \quad -\sigma_{e} < \sigma_{Y}$$
(7)

ここで、oy は降伏応力である。

3. Fabbro モデル

レーザー生成プルームの解析のモデルとしてよく用 いられる、Fabbro モデルについて考察する。図 5 は、 Fabbro モデルの概念図である²⁾。時刻 t において、内 部エネルギー $E_i(t)$ 、圧力 $P_i(t)$ 、長さ L(t)のプルームに、 強度 I(t)のレーザーが時間 dt の間照射された後、内部エ ネルギー $E_i(t+dt)$ 、圧力 $P_i(t+dt)$ 、長さ L(t+dt)のプルーム に変わるとしている。Fabbro モデルでは各々の時刻にお いて、プルーム中の圧力と内部エネルギーは、空間分布 を持たない、と仮定されている²⁾。よって、Fabbro モデ ルで求めた圧力は、シミュレーションで得られる圧力の 空間平均値に相当する、と考えられる。

図5 Fabbro モデルの概念図

Fabbro モデルにおいて、状態方程式を理想気体のもの と同じとすると、レーザーの照射強度 I(t)と圧力 P(t)と プルームの長さ L(t)は、式(1)で関係付けられる⁸。

$$I(t) = \left(1 + \frac{3}{2\alpha}\right) P(t) \frac{dL(t)}{dt} + \frac{3}{2\alpha} L(t) \frac{dP(t)}{dt}$$
(8)

ここでαは、プルーム中の内部エネルギーが熱エネル ギーに変わる割合であり、Fabbroのモデル内では決めら れないパラメーターである。

媒質中での衝撃インピーダンスが一定であるとする と、圧力 P(t)とプルームの長さ L(t)は、式(9)で関係付け られる²⁾。

$$\frac{dL(t)}{dt} = \frac{2}{Z}P(t) \quad , \quad \frac{2}{Z} = \frac{1}{Z_1} + \frac{1}{Z_2} \tag{9}$$

ここで、 Z_1 、 Z_2 はそれぞれの媒質中での衝撃インピーダ ンスであり、媒質の質量密度 ρ と衝撃波速度 u_i を用い て、以下のように表される。

$$Z_i = \rho_i \, u_i \tag{10}$$

レーザー強度*I*を時間によらず一定とし、初期のプル ームの長さを0とすると、(1)式と(2)式から、圧力*P*と プルームの長さ*L*(*t*)は以下のように求められる。

$$P = \sqrt{\frac{\alpha}{2\alpha + 3}} \sqrt{Z} \sqrt{I} \tag{11}$$

$$L(t) = t \frac{2}{\sqrt{Z}} \sqrt{\frac{\alpha}{2\alpha + 3}} \sqrt{I}$$
(12)

本研究では、パラメーターとして、水の質量密度 1.0 g/cm³、衝撃波速度(音速)148290 cm/s、アルミニウム の質量密度 2.7 g/cm³、衝撃波速度(音速)642000 cm/s、 を用いた。4章で、シミュレーション結果と Fabbro モ デルの詳細な比較を行っている。 $Z=0.2732 \times 10^6$ g/cm²/s となる。 $\alpha = 0.2$ を仮定し、上記値を(17) 式と(18) 式に 代入すると、I=10 GW/cm² の場合、P=4.02 GPa、L(10ns)=29.35 µm となる。I=2.5 GW/cm² の場合、P=2.01GPa、L(10 ns)=14.67 µm となる。

4. レーザー生成プルームの評価

図6は、シミュレーションで求めた、時刻 10 ns 時の 圧力の空間分布である。横軸は初期の固体表面からの位 置である。レーザーの強度 10 GW/cm²、波長 1064 nm、 パルス幅 10 ns、時間形状は矩形波である。初期の固体 アルミニウムの厚さは 2 mm、水の厚さは 1 cm である。 計算領域は、-1.0 cm から 2 mm までである。初期の固 体アルミニウムと水の温度は 300 K である。図からわか るように、プルームの先端近傍では急激に圧力が低下し ている。初期の固体表面は z=0 であり、溶融したため固 体表面が最初の位置から正に移動している。

図6 10ns 時の圧力の空間分布

シミュレーションで、プルーム中の圧力の空間平均値 の時間変化を求めた。結果を図7に示す。シミュレーシ ョンにより得られた圧力の最大値は、(11)式で求められ る4.02 GPaと良い一致を示している。

図7 シミュレーションにより得られた、プルーム中の

圧力の平均値の時間発展

図8は、シミュレーション及び(12)式で求めたプルー ムの長さである。両者は良い一致を示している。図中の Simple model は、(12)式で求めたプルーム長を指す。

図8 シミュレーション及び simple model で得られた プルームの長さの時間発展

シミュレーションで求めた、プルーム中の内部エネル ギーが熱エネルギーに変わる割合 α の時間発展を図 9に示す。レーザーが照射されてからプルームが生成さ れるまでの時間は $\alpha=0$ である。固体から液体に相変化 した領域では、沸点に達するまで熱エネルギーが増加す るので α は時間に対して増加する。1 ns 時から 2 ns 時 においては、相変化に使われるエネルギーが増加し、 α は時間に対して減少する。その後、 α は時間に対して わずかに減少している。

図9 シミュレーションにより得られたαの時間発展

レーザーの時間形状は矩形波とし、レーザーの強度を 2.5 GW/cm²、5 GW/cm²、10 GW/cm²とした場合の、プ ルーム中の圧力の空間平均値の最大値をレーザー強度 の関数として図 10 に示した。強度を変化させても、シ ミュレーションと Fabbro モデルは良い一致を示した。

図 10 レーザー強度の関数として表したプルーム中の 圧力の空間平均値の最大値

レーザーの時間形状をガウシアンとし、パルス幅 10 ns、強度を 10 GW/cm² とした場合の、プルーム中の圧力 の空間平均値の最大値を図 11 に示す。矩形波の場合と 比べ、最大値が減少している。圧力波形の実効的な半値 全幅は 18 ns 程度である。圧力が最大になる時間が、レ ーザーピーク時より 4 ns 程度遅れている。

図 11 レーザーの時間形状をガウシアンとした場合の

プルーム中の圧力の空間平均値の最大値

5. 塑性圧縮応力の評価

レーザーピーニング統合シミュレーションにより、塑 性圧縮応力の評価を行った。レーザーの時間形状が矩形、 レーザー強度 10 GW/cm²、波長 1064 nm、パルス幅 10 ns の場合の塑性圧縮応力の時間発展を図 12 に示す。500 ns 時には、0.8 mm 程度深さの所に 1.45 GPa 程度の塑性 圧縮応力が生成されている。2 mm 厚さの固体アルミニ ウム中の音波の伝搬時間等を考慮し、シミュレーション の最大時間を 500 ns とした。

図12 塑性圧縮応力の時間発展

レーザーの時間形状は矩形波とし、パルス幅 10 ns、 レーザーの強度を 2.5 GW/cm²、5 GW/cm²、10 GW/cm² として、塑性圧縮応力の評価を行った。500 ns 時の最大 塑性圧縮応力の値をレーザー強度の関数として、図 13 に示す。500 ns 時の最大塑性圧縮応力の値は、レーザー 強度の平方根に比例する、ことが分かった。

レーザーの時間形状は矩形波、レーザーの強度を 10 GW/cm²とし、パルス幅を 3.2 ns、5 ns、10 ns、15 ns、20 ns とした場合の塑性圧縮応力の評価を行った。500 ns 時 の最大塑性圧縮応力の値をパルス幅の関数として、図 14 に示す。500 ns 時の最大塑性圧縮応力の値は、パル ス幅の対数に比例する、ことが分かった。

図14 最大塑性圧縮応力値のパルス幅依存性

レーザー強度 10 GW/cm²、波長 1064 nm、パルス幅 10 ns とし、パルス波形を変えた場合の塑性圧縮応力の 結果を図 15 に示す。大きな差異はなかった。

図15 パルス波形を変えた場合の塑性圧縮応力

6. 結言

本研究において、固体から液体、液体から中性気体、 中性気体から部分電離プラズマへの相変化の効果を取 り入れたレーザーピーニング統合シミュレーションコ ードを開発した。 レーザー生成プルームの解析のモデルとしてよく用いられる、Fabbroモデルについて、水中レーザーピーニングの場合の圧力とプルームの長さの解を導出した。

水中レーザーピーニングのシミュレーションを行い、 圧力及びプルームの長さが Fabbro モデルのそれと良い 一致を示した。プルームの圧力の平均値の時間発展につ いて、パルス波形依存性を評価した。

本研究において、塑性圧縮応力の計算のモデリングを 行い、レーザー照射から塑性圧縮応力生成までの統合シ ミュレーションを行った。固体表面からサブ mm の深 さのところに、数百 MPa から 1.6 GPa 程度の塑性圧縮 応力が生成される、という結果を得た。

500 ns 時の最大塑性圧縮応力の値について、レーザー 強度依存性、パルス幅依存性、及びパルス波形依存性を 評価した。

謝辞

伊藤良祐氏においては、近畿大学理工学部在学時に、 有益な議論を行った。ここに謝意を表す。

参考文献

- William Braisted, and Robert Brockman: International Journal of Fatigue 21, 719–724, 1999.
- R. Fabbro, J. Fournier, P. Ballard, P. Peyre, D. Devaux, and J. Virmont:: J. Appl. Phys. 68, 775-784, 1990.
- P Peyre, L Berthe, R Fabbro, and A Sollier: J. Phys. D: Appl. Phys. 33, 498–503, 2000.
- J.L. Ocana, M. Morales, C. Molpeceres, J. Torresa: Applied Surface Science 238, 242–248, 2004.
- 5) 古河裕之: レーザー研究, 36, 742-746, 2008.
- 古河裕之、藤田和久、森谷信一: プラズマ核融合学会誌, 87, 642-649, 2011.
- M. V. Allmen and A. Blatter: Laser-Beam Interactions with Materials, Springer, 1995.
- S. I. Anisimov and B. S. Luk'yanchuk: Physics-Uspekhi, 45, 293-324, 2002.
- ABAQUS, 1996, Users' Manual, Version 5.5. Hibbitt, Karlsson & Sorensen.

-65-
シミュレーションによるレーザー核融合炉設計研究

理論・シミュレーションチーム

古河裕之、乗松孝好1

1大阪大学レーザーエネルギー学研究センター

1. はじめに

レーザー核融合炉の研究においては、新たに多 くの技術開発、材料開発等を行わなければならな い。現在、IFE フォーラム・レーザー核融合技術 振興会では、レーザー核融合実験炉概念設計委員 会(委員長神前康次、副委員長乗松孝好)を設け て、点火燃焼後に発電実証を行う実験炉の概念を 明らかにし、商用炉へ向けた研究、開発方針を明 らかにすることを目的とし、レーザー核融合実験 炉の設計を行っている。点火燃焼の物理、ターゲ ット製作供給技術、レーザー照射精度に対する利 得のスケーリング則、高平均出力レーザーの建設 見通しが立っていることが実験炉建設の要件と なる。

委員会報告によると、実験炉は3つのフェイズ に分けて進めることを考えている。必要なレーザ ーは初めに製作し、チェンバー(炉)のみを各フ ェイズの目的に合った最も合理的なものを製作 する。圧縮レーザー500kJ、点火レーザー100kJで 繰り返しは1~4Hzを想定している。

フェイズIは繰り返し照射による利得発生の証 明を目的とし、1 Hz で 100 ショットを行う。チェ ンバーはブランケットを持たず、現在のレーザー 核融合実験設備とほぼ同様のイメージである。

フェイズ II は発電実証を目的とし、1 Hz で1-2 週間連続運転し、蒸気タービンで発電する。チェ ンバーは固体壁で、ブランケットは現在磁場核融 合で研究されているリチウムタイタネートのペ レットを用い、ヘリウムを介して水冷するシステ ムを採用する。

フェイズ III は長期運転を実証することを目的 とし、4 Hz で半年程度連続運転を行う。商用炉で 採用される液体壁チェンバーが採用され、液体壁 に伴う技術課題の検証と、トリチウム製造、液体 金属循環による腐食の試験、商用炉に向けた材料 試験が行われる。液体壁固有の課題とは、照射後 のチェンバー内の排気、液体金属による腐食、最 終光学系への金属蒸気の影響などである。冷却系 は液体 LiPb のループと水ループで構成され、熱 交換器を通したトリチウムの拡散の防止対策な どもテストされる。

点火燃焼を実現した後、最終的に核融合エネル ギーを実用化する商用発電プランとの建設のた めには、フェイズ III クラスのシステムでの材料 試験データの蓄積が必要になる。図1は、委員会 の設計によるレーザー核融合実験炉フェイズ III のチェンバー周辺のイメージである。

図1 レーザー核融合実験炉フェイズ III のチェンバー周辺のイメージ

2. 液体壁チェンバーの課題

筆者らは、レーザー核融合実験炉概念設計委員 会の前身である「レーザー核融合炉設計委員会」 以降、現在も引き続き、高速点火レーザー核融合 炉発電プラント「KOYO-fast」の設計研究を行っ ている。「KOYO-fast」では、液体壁チェンバー を採用しており、厚さ3 mm から5 mm 程度の液 体リチウム鉛が第一壁に沿って滝状に流下する 液体壁構造により、第一壁を保護している¹⁻³⁾。実 験炉も、フェイズ III では液体壁チェンバーを採 用する予定になっている。チェンバー内で起こる 物理現象は、定性的には実験炉フェイズ III と KOYO-fast では、ほぼ同じである。

液体壁は、核融合燃焼により生じた α 粒子及 びデブリ粒子により、液体から中性気体、部分電 離プラズマへと相変化を伴いながらアブレーシ ョンする。生成されたプルーム(気体、液体、固 体などの塊)がチェンバー中心付近で衝突すると、 エアロゾルが生ずることが予想される。それは金 属蒸気の排気、引いては核燃焼反応にとって大き な妨げとなる。高速点火レーザー核融合炉発電プ ラント「KOYO-fast」では、図2に示すように、 第一壁から飛散したプルームがチェンバー中心 部に集中しないように、第一壁を角度を付けたタ イル構造にしている²⁾。チェンバー中心の核融合 燃焼により生じたデブリが、タイル構造の第一壁 に衝突し、プルームを生成し、中心から離れた所 でプルーム同士が衝突する様子を表している。x, yは、3章で述べるシミュレーションの座標軸を 表す。

これらの複合複雑現象を解析するため、著者ら は 統 合 シミュ レー ショ ンコード DECORE (DEsign COde for REactor)を開発した。今年 度は、2 次元の DECORE を開発し、炉心プラズマ からの X線、 α 粒子及び粒子等と、液体壁及びア ブレーション生成プルームの相互作用を2次元的 計算し、プルームの挙動を2次元的に評価した。

3 章で DECORE について述べる。4 章では、プ ルームの2次元的挙動について詳述する。5 章は、 結言と今後の課題である。

3. 開発したシミュレーションコード^{1,3)}

図 3 に DECORE の概要を示す。DECORE は、 原子モデルコード、状態方程式コード、放射輸送 係数コード、阻止能コード、アブレーション解析 コードから成る統合コードであり、ACONPL は アブレーション解析コード部を指す。前年度まで ACONPL は 1 次元コードであったが、今年度 2 次 元コードを開発した。2 次元コードでは「保存保 証型 CIP 法」及び「M型 CIP 法」を用いた⁴⁾。前 年度までは、X 線、α 粒子及び荷電粒子と、液体 鉛及び部分電離プラズマの相互作用は 1 次元モ デルで計算していたが、今年度は相互作用も 2 次 元モデルで計算した。

図 2 KOYO-fast の液体壁チェンバー第一壁のタイル構造の概念図

図 3 DECORE の概要

4. 生成されるプルームの2次元的挙動解析

本研究において、燃料球から液体壁表面までの 距離が3mの部位に、垂直にX線、α粒子、及び デブリ粒子が入射される場合について、シミュレ ーションを行った。液体鉛の厚みを2mmとし、 液体鉛の初期温度及び最低温度は 823.15 K

(550 ℃) とした。炉心からの X 線、α粒子、及 びデブリ粒子のパルス波形とスペクトルについ ては、文献 1 と文献 5、鉛に対する X 線の吸収係 数については、文献 1 を参照されたし。図 3 は、 2 次元シミュレーションのモデル図である。タイ ルの端から 1 cm の部分を切り出し、空間的に一 様に X 線、α粒子、及びデブリ粒子が照射される。

図4 2次元シミュレーションのモデル図

レーザーが燃料球に照射されてから 9.8 µs 後ま で、2 次元シミュレーションを行なった。図 5 は、 2 次元シミュレーションにより求めた、液体及 びプルームの数密度分布の時間発展である。X 線、α 粒子及び荷電粒子と、液体鉛及び部分電離 プラズマの相互作用も 2 次元モデルで計算して いる。プルームの根元(壁側)は横に広がって いるが、先頭部分はあまり横方向には広がって いない。KOYO-fastの設計では、チェンバーの 中心部でのプルーム同士の衝突避けるために、 プルームの横方向の広がりを 30°程度以内と 想定している、図 5 の結果が正しければ、プル ームの先端部分はあまり広がっておらず、チェ ンバーの中心部でプルーム同士が衝突する確 率は極めて低い。

図 5 2 次元計算により得られた数密度分布 (a) 0 µs 時 (b) 4.8 µs 時 (c) 9.8 µs 時

5. 結言と今後の課題

本研究により、レーザー核融合液体壁チェンバ ー第一壁のタイル構造の有効性が議論できるよ うになった。今年度は、液体壁とX線、α粒子、 荷電粒子の相互作用も2次元モデルで計算を行っ た。流体近似の適用が危ぶまれる低密度状態に対 して、Smoothed Particle Hydrodynamics (SPH) 法、 Moving Particle Semi-implicit (MPS) 法などの粒 子法による取り扱いを行うことも必要である。中 性気体、及び部分電離プラズマと荷電粒子の相互 作用の理論モデルに関しても、実験等による検証 が必要である。状態方程式の改良も必要である。 エアロゾル生成の評価についても、モデルの検証、 改良等が必要である。

参考文献

- 古河裕之,城崎知至,神前康次,乗松孝好,疇地宏, 西川雅弘,田中和夫,三間圀興,苫米地顕,山中千代 衛:プラズマ核融合学会誌,82,617-627,2006.
- 神前康次, 乗松孝好, 古河裕之, 林巧, 惣万芳人, 西 川正史, 苫米地顕: プラズマ核融合学会誌, 83, 19-27, 2007.
- 3) 古河裕之, 乗松孝好: プラズマ核融合学会誌, 87, 51-55, 2011.
- 4) 矢部孝, 内海隆行, 尾形陽一: CIP法, 森北出版, 2003.
- T. Johzaki, K. Mima, Y. Nakao, H. Nagatomo, and A. Sunahara: Proc. 3rd Inertial Fusion Sciences and Applications, 2003.

H25 年度レーザー損傷耐力データベース化試験

レーザー技術開発室

本越伸二、岸田知門、實野孝久

1大阪大学レーザーエネルギー学研究センター

1. はじめに

レーザー装置には多くの光学素子が使用されている。 高出力レーザー装置では、その光学素子がレーザー光に よって損傷することがしばしば発生し、装置の性能、稼 働率を低下させる要因になっている。そのため、光学素 子のレーザー損傷耐力(損傷しきい値)の向上、レーザ ー損傷物理の理解は、高出力レーザー装置を開発、利用 する上で重要な課題となっている。

レーザー技術総合研究所では、高耐力光学素子の開発 を進めるとともに、平成17年度より、企業からの依頼 によるレーザー損傷しきい値評価試験を行っている。ま た、光学素子のレーザー損傷しきい値の標準化を図り、 共有できる情報を発信することを目的として、光学素子 メーカーの協力を得て「レーザー損傷耐力データベース 化試験」を実施している。これまで、波長1064 nm、532 nm、355 nm、248 nm で用いる光学素子を対象として、 データベース化試験を実施し¹⁷、その結果をホームペ ージ上で公開してきた⁸。図1 に過去10 回のデータベ ース化試験の参加企業数と試料数を示す。第4 回までは 無料で実施したこともあり、参加企業数、試料数ともに 多かった。一昨年(第9回、10回)は、評価対象素子 がダイクロイックミラー(1064 nm 透過、532 nm 反射) であったこともあり、参加は7社21 試料に止まった。

平成25年度は、1064 nm 用光学素子に対するデータ ベース化試験への要望が多かったことから、第1回 (1064 nm 用高反射膜)、2回(1064 nm 用反射防止膜) と同じ特性仕様の光学素子に対して再度データベース 化試験を実施した。本報告書では、その結果をまとめる とともに、第1回、2回との比較結果について述べる。

2. 光学特性仕様

第11回、12回の光学特性仕様と参加企業数、試料数 を表1に示す。高反射膜では、レーザー装置内で最も多 く使用されている45°ミラー、反射率を99.5%以上(P 偏光)とした。P偏光では、S偏光に比べて高い反射率 を得ることが難しく、その分、層数や屈折率差を増やす 必要があり、一般にS偏光に比べて損傷耐力は低くなる。 反射防止膜の基板材料は、窓材やレンズ等に使用される

図1 レーザー損傷耐力データベース化試験の参加企業数と試料数の推移

表1 平成25年度データベース化試験の 光学素子仕様

	第11回	第12回
膜タイプ	高反射膜	反射防止膜
波長 [nm]	1064	
入射角 [deg]	45	0
偏光	Р	-
反射率 [%]	>99.5	<0.5
基板材料	任意	石英ガラス
表面粗さ	光学研磨	RMS<10Å
裏面粗さ	任意	表面と同じ
参加企業数	8	9
評価試料数	18	30

石英ガラス基板とした。

反射防止膜では基板ガラス面までレーザー光が届く ため、コート前の表面粗さやクリーニングの状態がレー ザー損傷耐力に大きな影響を及ぼす。そのため前回同様、 表面粗さのみを指定した。参加企業数、試料数は、それ ぞれ8社18個、9社30個であり、第1回、2回に比べ て約半数であった。また、高反射膜の試料には、入手し たドイツメーカーのものが含まれている。ドイツは、レ ーザーの産業応用を強力に推進していることから、その 光学素子も高いレーザー損傷耐性をもつことが予想さ れる。

3.評価装置と方法

レーザー損傷耐力評価試験には、波長 1064 nm、パル ス幅 10 ns の Q スイッチ Nd:YAG レーザー (Spectra Physics 社 Quanta-ray)を使用した。縦横ともに単一モー ド発振器の出力を増幅器により増幅した後、焦点距離 3000 mm のレンズにて試料上に集光した。試料に照射す るパルスの時間波形、エネルギーは、バイプラナ光電管、 エネルギーメータでそれぞれ計測した。また、レンズか ら試料表面までと同じ距離に CCD カメラを設置し、試 料上のビーム形状およびビームサイズを計測した。照射 レーザー光のエネルギーは、1/2 波長板と平板偏光子を 用いて調整した。 評価方法には、1-on-1 (1 パルス照射毎に損傷の有無 に関わらず照射位置を移動する)試験法を採用した。こ の方法は、過去に多くの論文報告等もあり、比較情報が 豊富である。照射前後の試料表面をノマルスキー顕微鏡 (50 倍)により観察した。レーザー損傷しきい値は、 損傷が発生した最小エネルギー密度として決定し、照射 ガウス分布の尖頭値で示した。

4. 1064 nm 用高反射膜の評価結果

高反射膜のデータベース化試験結果を図2に示す。最 大損傷しきい値は約220 J/cm²となった。石英ガラス内 部損傷しきい値が経験的に250-300 J/cm²であるため、 この高反射膜の損傷しきい値は、石英ガラス内部と同程 度であると見積もられる。また、最頻度しきい値は30-40 J/cm²となった。

比較のために、第1回データベース化試験結果を図3 に示す^{1,0}。この時の最大損傷しきい値は約290 J/cm²で あり、今回よりも少し高い値の試料が存在したが、この 差は成膜技術の差よりも、保管方法や運搬方法などの僅 かな環境の差によるものと考えられる。また、第1回の 最頻度しきい値は10-20 J/cm²にあり、今回の方が高い。 メーカーの膜設計および成膜技術の改善の結果と、試料 数全体が減少したため度数分布に変化が生じたと考え られる。

図2 1064nm 高反射膜データベース化試験結果

図3 第1回データベース化試験結果

5. 1064 nm 用反射防止膜の評価結果

図4、図5に、今回の1064 nm 用反射防止膜のデータ ベース化試験結果と、第2回データベース化試験の結果 ¹⁰を示す。それぞれの最大損傷しきい値は、約270 J/cm² と約320 J/cm²であり、これも高反射膜の場合と同様に 技術的な差はないと考えられる。一方、最頻度しきい値 は、第2回の場合には30-50 J/cm² にあったのに対して、 今回は20-30 J/cm² と 70-90 J/cm² と 2 つに分かれた。そ の結果、全体の度数分布は高耐力へシフトしたものと判 断される。しかし、試料数の減少も度数分布に影響して いると考えられるので、個別に詳細な比較が必要である。

6. メーカー毎の損傷耐力の比較

第1回と第11回、また第2回と第12回の両方のデー タベース化試験に参加したメーカーサンプルの損傷し きい値を比較した。各メーカーは、それぞれのデータベ ース化試験に、複数個の試料を提供しているので、その 中の最高損傷しきい値のみを比較した。

図6に比較可能なメーカー9社の高反射膜、反射防止 膜の最高レーザー損傷しきい値を示す。6社のメーカー において、今回(第11回、12回)の方が高いレーザー 損傷しきい値であることが判る。特に、A社、E社につ いては、5倍以上の損傷耐力の改善が進んでいる。

図4 1064nm 反射防止膜データベース化試験結果

図5 第2回データベース化試験結果

以上のことから、図2、図4のデータベース化試験の 度数分布は、メーカー各社の膜設計、成膜技術の改善に より高耐力化が進んだ結果と言える。

7. まとめ

平成25年度に実施した第11回(1064 nm 高反射膜)、 12回(1064 nm 反射防止膜)データベース化試験の結果 についてまとめた。この光学素子は、平成19年度に実 施した第1回、2回と同じ光学特性仕様であり、前回か

らの比較により高耐力化が進んだことを確認した。この ことは、国内技術の底上げが可能であることを示唆する ものである。

今後、他の光学素子、またレーザー照射条件において データベース化試験を実施するとともに、高耐力化へ支 援を進めていく。

謝辞

試料を提供し御協力頂いた高耐力光学素子研究会参加 企業各社に感謝致します。

参考文献

- 1) 本越伸二他: ILT 2009, レーザー技術総合研究所, 2009.
- 2) 本越伸二他: ILT 2010, レーザー技術総合研究所, 2010.
- 3) 本越伸二他: ILT 2011, レーザー技術総合研究所, 2011.
- 4) 本越伸二他: ILT 2012, レーザー技術総合研究所, 2012.
- 5) 本越伸二他: ILT 2013, レーザー技術総合研究所, 2013.
- S.Motokoshi, et al.: Proc. of Laser-Induced Damage in Optical Materials 2010, SPIE 7842, 78420F-1, 2011.
- S.Motokoshi, et al.: Proc. of Laser-Induced Damage in Optical Materials 2011, SPIE 8190, 81900I-1, 2012.
- 8) http://www.ilt.or.jp/kenkyukai.html

新レーザー材料開発

レーザー技術開発室

本越伸二、宮永憲明¹、村上匡且¹ ¹大阪大学レーザーエネルギー学研究センター

1. はじめに

現在、固体レーザー媒質として誘導放出断面積が大き く、発振が容易なNd:YAG結晶が広く利用されている。 しかし結晶材料は大型化が困難で、大きな誘導放出断面 積は高出力動作において寄生発振を引き起こす要因と なるため、Nd:YAG材料は大出力レーザーには不向きで ある。

近年、この課題を解決するために、Yb:YAG 材料が注 目されている。900 nm 帯を半導体レーザー(LD)で直 接励起できるために、Nd:YAG 材料に比べて高効率動作 が可能である。しかし、準3準位系のエネルギー準位の ために、反転分布ができにくく、強励起が必要である。 また、極低温に冷却することにより4準位レーザー動作 が可能となり、低温冷却固体レーザー装置として、研究 開発が進められている¹⁾。

一方、励起用LDの高出力化が進み、固体レーザーの 高効率動作が可能となったが、パルス動作やコスト性能 を考えると、未だにフラッシュランプ(FL)励起も多 く利用されている。そのため、白色光であるFL励起固 体レーザーの高効率化も重要な課題である。

このように、現在利用されているレーザー材料についても、一長一短があり、用途に応じた固体レーザー材料の開発が期待されている。

レーザー技術総合研究所では、これまで宇宙へのレー ザー応用を目的に、太陽光励起レーザー装置の開発研究 を行ってきた。Cr³⁺を共添加した Nd/Cr:YAG²⁾セラミッ クスを採用して、発振および増幅実験を行った。Cr³⁺イ オンは、可視域に広い吸収帯を持ち、白色光である太陽 光を効率よく吸収し、そのエネルギーを発振イオンであ る Nd³⁺に効率よく移乗すると考えられてきた。しかし ながら、そのエネルギー移乗の過程は、未だ十分に理解 されていない。

本報告書では、Nd/Cr:YAG 材料内のエネルギー移乗 過程の解明を目的に、平成25年度に実施した蛍光特性 の温度依存性の結果についてまとめる。また、新しく始 めたNd:CNGG (CaNbGa ガーネット)^{3,4)}セラミック材 料の開発の現状について報告する。

2. Nd/Cr:YAG 材料のエネルギー準位

Nd/Cr:YAG セラミック中の Cr^{3+} イオンと Nd³⁺イオン のエネルギー準位を図1に示す。 Cr^{3+} イオンは、紫外か ら可視域に広い吸収帯 (${}^{4}T_{1}$ 、 ${}^{4}T_{2}$)を持っている。この 吸収帯準位から蛍光上準位である ${}^{2}E$ に熱的に緩和し、 その後 Nd³⁺イオンへ遷移(エネルギー移乗)することに よって Nd³⁺の蛍光量が増加すると考えられている 5 。ま た、 Cr^{3+} イオンに蓄積されるエネルギーが Nd³⁺イオン へ移乗するため、 Nd/Cr:YAG セラミックの Cr^{3+} イオン の蛍光寿命は、 Cr^{3+} のみを添加した YAG と比較して短 くなると考えられる。

レーザー材料の蛍光特性は、Nd³⁺イオンやCr³⁺イオン

図1 Nd/Cr:YAG 材料のエネルギー準位

-74-

などの添加イオンのエネルギー準位によって決まる。そ のエネルギー準位は主材料であるYAGの結晶場により 影響を受ける⁹。これら2つのイオンにおいて、Nd³⁺イ オン(希土類)の発光に関与する4f電子は5s、5p電子 で遮蔽されているのに対して、Cr³⁺イオン(遷移金属) では発光に関与する3d電子が不完全最外殻を作るため、 外場の影響を敏感に受ける。外場によりCr³⁺イオンのエ ネルギー準位は変化するので、それに伴った蛍光特性を 解析すれば、Nd/Cr:YAGセラミックのエネルギー移乗 を明らかにできると考えられる。昨年度は、母材温度を 変化させた場合のNd/Cr:YAGセラミックおよび Cr³⁺:YAG粉体の蛍光減衰波形を評価し、エネルギー移 乗の解析を行った。

3. Cr³⁺イオンの蛍光温度依存性

蛍光の測定には、Nd/Cr.YAG セラミックおよび Cr.YAG 粉体を用いた。実験配置図を図2に示す。励起 源としてローダミン色素レーザー(610 nm、パルス幅 10 ns)光をサンプルに照射し、干渉フィルターを通して 蛍光波長を限定し、PIN ダイオード(応答速度0.1 µs) で蛍光寿命を評価した。干渉フィルターはCr³⁺イオンの 蛍光波長である 690±5 nm を選択した。サンプル温度は、 ヒーターと熱電対を用いて 293~473 K の範囲で変化さ せた。

Lens f=40 mm PIN diode Bandpass filter Bandpass filter Coscilloscope Lens f=250 mm Nd:YAG 2w (λ =532 nm)

図2 Nd/Cr:YAG 材料蛍光測定配置図

図3に測定したNd/Cr:YAG セラミックの蛍光減衰波 形の温度依存性を示す。蛍光寿命は、温度上昇に伴い短 くなることが判る。Cr:YAG 材料においても温度上昇 とともに寿命の短縮が確認された。また、それぞれの温 度における蛍光寿命を2つの材料で比較した結果、 Nd/Cr 共添加材料の方がCr:YAG より短いことが判った。

この減衰波形の違いから、式(1)のように、Cr³⁺から Nd³⁺へのエネルギー移乗効率(割合)η_{Tr}を求めた。

$$\eta_{\rm Tr} = \left(1 - \frac{\tau_{\rm Cr(Nd)}}{\tau_{\rm Cr}}\right) \tag{1}$$

ここで、 $\tau_{G(Nd)}$ 、 τ_{Gr} は、それぞれ Nd/Cr:YAG 材料、Cr:YAG 材料からの Cr³⁺の蛍光寿命を示す。結果、エネルギー移 乗効率は、温度によらず約 65%で一定であることが判 った⁷。

4. Nd: CNGG 材料の諸特性

固体レーザーの媒質には主に単結晶とガラスが存在 し、単結晶はガラスと比較して大型化が困難である。し かし、熱耐力が強く高繰り返しのパルス動作に有利であ る。一方、ガラスは単結晶と比較してスペクトル幅が広 く高ピークパワーのパルス動作が得意であるが、熱破壊 に弱いという欠点がある。

結晶材料ではYAG (Y₃Al₅O₁₂)に代表される、等方的 で固く化学的に安定なガーネット構造を持つ結晶が広

図3 Nd/Cr:YAG 材料のCr³⁺イオン蛍光減衰波形

く研究され、様々な金属元素の組み合わせによってガー ネット構造の結晶を得ることができる。ガーネット構造 は $\{C\}_3\{A\}_2\{D\}_3O_{12}$ の化学式で表され、 $\{C\}$ サイトには $Y^{3+}、Gd^{3+}、などや活性イオンとなる Nd^{3+}などの元素が$ $入り、8 個の酸素が 12 面体状に配位している。<math>\{A\}$ サイ トには Sc³⁺、Al³⁺、Ga³⁺などの元素が入り 6 個の酸素が 8 面体状に配位している。 $\{D\}$ サイトには Al³⁺、Ga³⁺な どの元素が入り 4 個の酸素が 4 面体状に配位している。 例えば、YAG の場合は $\{C\}$ サイトには Y、 $\{A\}$ 、 $\{D\}$ サ イトには Al が入っている。

Nd 添加ガーネット結晶とガラス材料の特性を表1に 示す³⁴⁸⁻¹⁴。表からも、ガラス材料は広い蛍光スペクト ル幅を持つが、誘導放出断面積、熱伝導率が小さいこと が分かる。一方、Nd:YAG 材料は高い熱伝導率を持つが、 誘導放出断面積が大きすぎて、容易に寄生発振を起こす。 これらの中間である Nd:CNGG は適切な誘導放出断面 積 (3~9×10⁻²⁰ cm²)の範囲内であり、ガラスよりも高 い熱伝導率、ガーネット構造の結晶材料の中で広い蛍光 スペクトル幅を持つため、高出力レーザー媒質の候補と 考えられる。

CNGG は Ca²⁺、Nb⁵⁺、Ga³⁺の元素から構成され、{A} サイトに価数の違う元素がランダムに入ることによっ て電荷補償を保つためにランダム空孔を生じる。そのた め、 CNGG の組成式は

$$Ca_3Nb_{(1.5+1.5x)}Ga_{(3.5-2.5x)} \Box_x O_{12}$$
 (2)

となり、□は空孔を表す。x=0.125の

$$Ca_3Nb_{1.6875}Ga_{3.1875} \square_{0.125}O_{12}$$
 (3)

が調和溶融組成と呼ばれる作り易い組成比であり、単結 晶を育成できるのは、 $0.11 \leq x \leq 0.14$ の範囲である とされている¹⁵が、多結晶では x=0 の $Ca_3Nb_{1.5}$ $Ga_{3.5}$ O_{12} の作製も報告されている¹⁶。

平成 26 年度は、Nd:CNGG 結晶のセラミックス化を 目標に、微結晶粉体の製作を行い、材料特性を評価した。

5. Nd: CNGG 微結晶粉体の製作と蛍光特性

ゾルゲル法を用いて、微結晶粉体の製作を行った。合 成原材料には、酢酸ネオジム Nd(CH₃COO)₃、酢酸カル シウム Ca(CH₃COO)₂、ニオブイソプロポキシド Nb[OCH(CH₃)₂]₅、ガリウムイソプロポキシド Ga[OCH(CH₃)₂]₅を化学組成比に合わせて合成し、その 焼結温度による蛍光特性の違いを蛍光分光装置により 測定した。

	誘導放出断面積 [×10 ⁻²⁰ cm]	蛍光寿命 [μs]	熱伝導率 [W/mK]	蛍光スペクトル幅 (FWHM)[nm]
Nd:YAG	28	242	13	1.4
Nd:YSAG	9.4	265	-	5.5
Nd:YSGG	15	270	7.9	1
Nd:GGG	15	200	13	0.9
Nd:GSAG	32	256	5.6	1.3
Nd:GSGG	16	265	6	-
Nd:CNGG	5.4	170	4.7	17
Nd:CLNGG	2.4	-	3.0	17
Nd:リン酸塩 ガラス	4.0	310	1.3	21

表1 Nd 添加ガーネット結晶の諸特性^{3,4,8-14)}

図4 Nd:CNGG 微結晶粉体の蛍光特性

図4に製作した微結晶粉体の蛍光特性を示す。図4(a)、 (b)はそれぞれ異なった製作ロットを示し、焼結温度が 異なる。また比較のために報告されている Nd:CNGG 単 結晶の蛍光特性を重ねて示す。図より、焼結温度により 異なった蛍光特性を示すことが判った。また X 線回折 装置を用いて、これらのサンプルの結晶構造を確認した 結果、サンプル1 には、CNGG 結晶以外の異なった酸 化物結晶が含まれていることが判った。以上のことから、 適切な原材料、焼結温度によって、Nd:CNGG 微結晶の 製作は可能であり、今後、透明セラミックス化に向けて 研究を進めていく。

6. まとめ

更なる固体レーザーの高性能化、高効率化に向けて、 新しいレーザー材料の開発、材料評価を進めた。 Nd/Cr:YAG セラミックス、Nd:CNGG セラミックスとも に、これまでにないレーザー諸特性をもち、固体レーザ ーの新しい応用の可能性を示唆している。

今後、材料物性評価、製造方法の最適条件などを明ら かにし、レーザー動作特性の評価を進めていく。

参考文献

- 1) 宮永憲明他: プラズマ・核融合学会誌,83,3-18,2007.
- 2) Z. J. Kiss and R. C. Duncan: Appl. Phys. Lett., 5, 200-202, 1964.
- 3) A. Agnesi et al.: J. of Quan. Electron. 37, 304-313, 2001.
- 4) Y. Ono, et al.: Physica B, 213-214, p.420-422, 1995.
- 5) 椿本孝治他:レーザー研究, 37, 698-703, 2009.
- B. Henderson, et al.: J. Phys. C Solid State Phys., 21, 6187-6198, 1988.
- 7) Y. Honda, et al.: J. of Luminescence, 148, 342-346, 2014.
- 8) 小林喬郎: 固体レーザー, 学会出版センター, pp. 84-86, 1997.
- 9) H. Okada, et al.: Optics Lett., 35, 3048-3050, 2010.
- J. Saikawa et al.: Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2004), paper TuB17, 2004.
- Y. Sato et al.: Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2004), paper WB6, 2004.
- 12) L. J. Qin, et al.: Laser Physics, 18, 719-721, 2008.
- 13) A. Rapaport, et al.: Applied Optics, 41, 7052-7057, 2002.
- 14)小林喬郎: 固体レーザー, 学会出版センター, pp. 74, 1997.
- 15) K. Shimamura, et al.: J. of Crystal Growth, 147, 99-103, 1995.
- 16) Y. K. Voronko, et al.: Optical Materials, 20, 197-209, 2002.

発表論文リスト

発表論文リスト

○レーザーエネルギー研究チーム

· ·		
著	者	<u>D. Li</u> , M. Hangyo, Z. Yang, Y. Tsunawaki, Y. Wei, Y. Wang, S. Miyamoto, M. R. Asakawa, and <u>K. Imasaki</u>
題	目	Theoretical analysis and simulation of growth rate and start current in Smith–Purcell free-electron lasers
論文	誌名	Terahertz Science and Technology, Vol.6, No.3, pp.189-205, 2013
著	者	M.Zhang, Y.Wei, G.Guo, L.Yue, Y. Wang, and D. Li
題	目	Study on two kinds of novel 220 GHz folded-waveguide traveling-wave tube
論文	誌名	Japanese Journal of Applied Physics Vol.53, pp.036201, 2014
著	者	<u>李大治</u> 、萩行正憲、宮本修治、 <u>今崎一夫</u>
題	目	グレーティングによるテラヘルツ電磁波放射の新理論
論文	誌名	レーザー学会第454回研究会報告、pp.17、2013
著	者	橋本智、陳彩華、小林花綸、川田健二、 <u>李大治</u> 、天野壮、宮本修治
題	目	小型電子線形加速器LEENAを用いたテラヘルツ光源開発
論文	誌名	電気学会論文誌C、Vol.134、p.495、2014

著	者	T. Somekawa, M. Kasaoka, F. Kawachi, Y. Nagano, M. Fujita, and Y. Izawa
題	目	Analysis of DissolvedC ₂ H ₂ in Transformer Oils Using Laser Raman Spectroscopy
論文	誌名	Opt. Lett., Vol.38, No.7, pp.1086-1088, 2013
著	者	H. Furuse, H. Chosrowjan, J. Kawanaka, N. Miyanaga, M. Fujita, and Y. Izawa
題	目	ASE and parasitic lasing in thin disk laser with anti-ASE cap
論文	誌名	Opt. Express, Vol.21, No.11, pp.13118-13124, 2013
著	者	H. Furuse, <u>T. Sakurai, H. Chosrowjan</u> , J. Kawanaka, N. Miyanaga, <u>M. Fujita,</u> S. Ishii and <u>Y. Izawa</u>
題	目	Conceptual design of 10 kW high-average power laser system based on cryogenic Yb:YAG/YAG composite ceramics
論文	誌名	"The Eighth Internaional Conference on Inertial Fusion Sciences and Applications (IFSA)" Technical Digest, paper - P.Mo-50, 2013
著	者	H. Fujita, K. Iyama, R. Bhushan, K. Tsubakimoto, H. Yoshida, <u>M. Fujita,</u> N. Miyanaga, and T. Kawashima
題	目	Development of a kW class Nd:YAG ceramic thin disc laser for advanced laser machining
論文	誌名	Proceedings of Advanced Lasers and Photon Sources Conference 2013, pp.139-140, 2013
著	者	<u>H. Chosrowjan</u> , H. Furuse, <u>M. Fujita</u> , <u>Y. Izawa</u> , J. Kawanaka, N. Miyanaga, K. Hamamoto, and T. Yamada
題	目	Interferometric phase shift compensation technique for high-power, tiled-aperture coherent beam combination
論文	誌名	Opt. Lett., Vol.38, No.8, pp.1277-1279, 2013

著	者	M. Fujita, T. Somekawa, and N. Miyanaga
題	目	Micromachining of CFRP with ultra-short laser pulses
論文詞	誌名	Proceedings of Laser Processing for CFRP and Composite Materiala, Vol. 41, pp.629-632, 2013
著	者	<u>T. Sakurai</u> , H. Furuse, <u>H. Chosrowjan</u> , J. kawanaka, N. Miyanaga, S. Ishii, and <u>M. Fujita, Y. Izawa</u>
題	目	Temperature distribution characteristics in a cryogenic Yb:YAG TRAM laser medium
論文詞	誌名	ALPS'13, The 2st Advanced Lasers and Photon Sources, Paper No. ALPSp6-18, pp.107-108, 2013
著	者	藤田雅之、染川智弘
題	目	ハイパワーレーザを用いたCFRPの微細加工
論文詞	誌名	レーザ加工学会誌、20巻、1号、pp.34-38、2013
著	者	H. Furuse, <u>T. Sakura</u> i, <u>H. Chosrowjan</u> , J. Kawanaka, N. Miyanaga, <u>M. Fujita</u> , S. Ishii, and <u>Y. Izawa</u>
題	目	Amplification characteristics of cryogenic Yb3+:YAG total-reflection active-mirror laser
論文詞	誌名	Applied Optics, Vol. 53, Issue 9, pp.1964-1969, 2014
著	者	S. Hwang, H. Furuse, H. Chosrowjan, C. Lim, J. Kawanaka, and N. Miyanaga
題	目	Gain Spectral Filtering for Spectral Enhancement of Mode-Locked Fiber Oscillators
論文詞	誌名	Japanese Journal of Applied Physics, Vol. 52, pp. 122701-122705,2013
著	者	M. Fujita, T. Somekawa, T. Samoto, H. Hirano, K. Hikichi, S. Tanaka, and M. Esashi
題	目	Laser Selective Transfer Process of Barium Strontium Titanate (BST) on a Sapphire Substrate
論文詞	誌名	Proceedings of ICALEO2013, pp.783-786, 2013
著	者	H. Ohno, Y. Iizuka, S. Horikawa, T. Sakurai, T. Hondoh, and H. Motoyama
題	目	Potassium alum and aluminum sulfate micro-inclusions found in polar ice from Dome Fuji, East Antarctica
論文詞	誌名	Polar Science, Vol.8, pp.1-9, 2014
著	者	T. Somekawa, M. Kasaoka, Y. Nagano, M. Fujita, and Y. Izawa
題	目	Transformer Working Assessment Using Laser Raman Spectroscopy
論文詞	誌名	Proceedings of 2nd International Conference on Photonics, Optics and Laser Technology, pp.21-25, 2014
著	者	T. Samoto, H. Hirano, <u>T. Somekawa</u> , K. Hikichi, <u>M. Fujita</u> , M. Esashi, and S. Tanaka
題	目	Wafer-to-wafer transfer process of barium strontium titanate metal-insulator-metal structures by laser pre-irradiation and gold-gold bonding for frequency tuning applications
論文詞	誌名	Proc. of 2013 Transducers and Eurosensors, XXVII, pp.171-174, 2013
著	者	<u>染川智弘</u> 、佐藤悠、高橋真弘、高田望、 <u>藤田雅之</u>
題	目	ラマンライダーによる数値予報モデルへの水蒸気同化
論文言	誌名	日本リモートセンシング学会誌、33巻、5号、pp.360-366、2013

 Oレーザー計測研究チーム

 著者
 島田義則

 題目
 レーザーによるコンクリート健全性の評価

 論文誌名
 O Pule E、Vol.35 No.5、467-471、2013

著	者	<u>島田義則</u>
題	目	レー ザを用いたコンクリート欠陥検出の進展
論文	誌名	超音波テクノ、2013.7-8、83-87、2013
著	者	N. Misaki, T. Asakura, H. Takinami, <u>Y. Shimada</u> , <u>O. Kotyaev</u> , and M. Shinoda, H. Sakamoto Y. Takahashi, and Y. Sakamoto
題	目	Development of non-destructive inspection method for concrete elements in tunnel lining using remote laser sensing
論文	誌名	Proceedings of the first international conference on civil and building engineering informatics, pp.79-83, 2013
著	者	S. Kurahashi, Y. Shimada, O. Kotyaev, T.Norimatsu, Y. Kono, S. Nakata and M. Ishii
題	目	Measurement of depth of surface cracks in concrete by laser-ultrasonic technique
論文	誌名	Proceedings of the first international conference on civil and building engineering informatics, pp.515-520, 2013
著	者	島田義則
題	目	レーザーを用いたコンクリート欠陥検出の進展
論文	誌名	検查技術、2013.11、31-35、2013

○レーザーバイオ化学研究チーム

著	者	K. Lugsanangarm, S. Pianwanit, A. Nueangaudom, S. Kokpol, F. Tanaka, N. Nunthaboot, K. Ogino, R. Takagi, T. Nakanishi, M. Kitamura, <u>S. Taniguchi</u> , and <u>H. Chosrowjan</u>
題	目	Mechanism of Photoinduced Electron Transfer from Tyrosine to the Excited Flavin in Flavodoxin from Helicobacter pylori. A comparative study with the flavodoxins and flavin mononucleotide binding protein from Desulfovibrio vulgaris (Miyazaki F)
論文	誌名	Journal of Photochemistry and Photobiology A: ChemistryVol.268,pp.58-66,2013
著	者	L. Mendonça, F. Hache, P. Changenet-Barret, P. Plaza, <u>H. Chosrowjan</u> , <u>S. Taniguchi</u> , and Y. Imamoto
題	目	Ultrafast Carbonyl Motion of the Photoactive Yellow Protein Chromophore Probed by Femtosecond Circular Dichroism
論文	誌名	Journal of the American Chemical Society, Vol.135, No.39, pp.14637-146432013
著	者	J. Liu, A.Yabushita, <u>S. Taniguchi, H.Chosrowjan</u> , Y. Imamoto, K. Sueda, N. Miyanaga, and T. Kobayashi
題	目	Ultrafast Time-Resolved Pump-Probe Spectroscopy of PYP by a Sub-8fs Pulse Laser at 400 nm
論文	誌名	The Journal of Physical Chemistry B, Vol.117, No.17, pp.4818-48262013
著	者	谷口誠治
題	目	太陽励起レーザーの水素生産への応用 -レーザー還元金属ナノ粒子による 水素生成-
論文	誌名	月刊光アライアンス,8月号,pp.20-23,2013
著	者	N. Nunthaboot, K. Lugsanangarm, S. Pianwanit, S. Kokpol, F. Tanaka, <u>S. Taniguchi,</u> <u>H. Chosrowjan</u> , T. Nakanishi, and M. Kitamura
		Bell-shaped dependence of the rate of ultrafast photoinduced electron transfer from
題	目	aromatic amino acids to the excited flavin on the donor-acceptor distance in FMN
		binding proteins
論文	誌名	Computational and Theoretical Chemistry, Vol.1030, pp.9-16, 2013

○理論・シミュレーションチーム

著	者	K. Tomita, K. Nakayama, K. Inoue, A. Sunahara and K. Uchino
日石		A Collective Laser Thomson Scattering System for Diagnostics of Laser-Produced
闼	Ħ	Plasmas for Extreme Ultraviolet Light Sources
論文	誌名	Applied Physics Express Vol.6, 076101, 2013
著	者	 Y. Mori, T. Sekine, O. Komeda, S. Nakayama, K. Ishii, R. Hanayama, K. Fujita, S. Okihara, N. Satoh, T. Kurita, T. Kawashima, H. Kan, N. Nakamura, T. Kondo, M. Fujine, H. Azuma, T. Hioki, M. Kakeno, T. Motohiro, Y. Nishimura, <u>A. Sunahara</u>, Y. Sentoku and Y. Kitagawa
題	目	1-Hz fast-heating fusion driver HAMA pumped by a 10-J green diode-pumped solid- state laser
論文	誌名	Nuclear Fusion, Vol.53, 073011-1-8, 2013
著	者	A. Maeno, N. Yamamoto, S. Fujioka, Y. Mori, <u>A. Sunahara</u> , T. Johzaki, and H. Nakashima
題	目	Analysis of Laser Wavelength and Energy Dependences of the Impulse in a Magnetic Thrust Chamber System for a Laser Fusion Rocket
論文	誌名	Transactions of the Japan Society for Aeronautical and Space Sciences, Vol.56, No.3, pp.170-172, 2013
著	者	A. Sasaki, <u>A. Sunahara</u> , K. Nishimura
題	目	Atomic processes and Radiation Hydrodynamics
論文	誌名	J. Plasma Fusion Res., Vol.10, pp.654-658, 2013
著	者	H. Nagatomo, T. Johzaki, <u>A. Sunahara</u> , H. Sakagami, K. Mima, H. Shiraga and H. Azechi
題	目	Computational study of the strong magnetic field generation in non-spherical cone- guided implosion
論文	誌名	Nuclear Fusion, Vol.53, pp.063018-1-4, 2013
著	者	K. Shigemori, Y. Hironaka, H. Nagatomo, S. Fujioka, <u>A. Sunahara</u> , T. Kadono, H. Azechi, and K. Shimizu,
題	目	Extremely high-pressure generation and compression with laser implosion
論文	誌名	Applied Physics Letters, Vol.102, 183501, 2013
著	者	 Y. Kitagawa, Y. Mori, O. Komeda, K. Ishii, R. Hanayama, K. Fujita, S. Okihara, T. Sekine, N. Sato, T. Kurita, T. Kawashima, H. Kan, N. Nakamura, T. Kondo, M. Fujine, H. Azuma, T. Motohiro, T. Hioki, M. Kaneno, Y. Nishimura, <u>A. Sunahara</u>, and Y. Sentoku
題	目	Hi-rep. Counter-Illumination Fast Ignition Scheme Fusion
論文	誌名	Plasma Fusion Res., Vol.8, 3404047, 2013
著	者	A. Sunahara
題	目	Initial Process of Laser-Plasma Interaction in the Extreme Ultra-Violet Light Source and the Inertial Confinement Fusion Plasmas
論文	誌名	J. Plasma Fusion Res., Vol.89, No.6, pp.416-422, 2013
著	者	T. Higashiguchi, S. Fujioka, <u>A. Sunahara</u> , T. Yanagida, and H. Mizoguchi
題	目	Progress of Extreme Ultraviolet (EUV) Source Development for Micro-Lithography
論文	誌名	The Review of Laser Engineering, Vol.42, No.1, pp.14-22, 2014

著	者	 Z. Zhang, H. Nishimura, T. Namimoto, S. Fujioka, Y. Arikawa, H. Nagatomo, M. Nakai, T. Ozaki, M. Koga, T. Johzaki, <u>A. Sunahara</u>, H. Chen, J. Park, G. J. Williams, H. Shiraga, S. Kojima, M. Nishikino, T. Kawachi, H. Hosoda, Y. Okano, N. Miyanaga, J. Kawanaka, Y. Nakata, T. Jitsuno, and H. Azechi
題	目	Quantitative measurement of hard X-ray spectra from laser-driven fast ignition plasma
論文	誌名	High Energy Density Physics, Vol.9, pp.435-438,2013
著	者	T. Johzaki, <u>A. Sunahara</u> , H. Nagatomo, H. Sakagami, S. Fujioka, H. Shiraga and K. Mima
題	目	Enhancement of Energy Coupling Efficiency in Fast-Ignition Laser Fusion by Electron Beam Guiding with Self-Generated Magnetic Field
論文	誌名	J. Plasma Fusion Res., Vol.89, No.7, pp.456-461, 2013
著	者	 T. Zh. Esirkepov, J. Koga, <u>A. Sunahara</u>, T. Morita, M. Nishikino, K. Kageyama, H. Nagatomo, K. Nishihara, A. Sagisaka; H. Kotaki, T. Nakamura; Y. Fukuda, H. Okada, A. Pirozhkov, A. Yogo, M. Nishiuchi, H. Kiriyama, K. Kondo, M. Kando, and S. V. Bulanov
題	目	Prepulse and amplified spontaneous emission effects on the interaction of a petawatt class laser with thin solid targets
論文	誌名	Nuclear Instruments and Methods in Physics Research Section A, Vol.754, pp.150-163, 2014
著	者	O. Komeda, Y. Nishimura, Y. Mori, R. Hanayama, K. Ishii, S. Nakayama, Y. Kitagawa, T. Sekine, N. Sato, T. Kurita, T. Kawashima, H. Kan, N. Nakamura, T. Kondo, M. Fujine, H. Azuma, T. Motohiro, T. Hioki, M. Kakeno, <u>A. Sunahara,</u> Y. Sentoku and E. Miura
題	目	First demonstration of laser engagement of 1-Hz-injected flying pellets and neutron generation
論文	誌名	Scientific reports, Vol.3, 2561, 2013
著	者	Y. Mori, T. Nakayama, K. Ishii, R. Hanayama, N. Satoh, T. Kurita, T. Kawashima, H. Kan, N. Nakamura, T. Kondo, M. Fujine, M. Kakeno, S. Ohshima, H. Azuma, T. Hioki, T. Kajino, T. Motohiro, <u>A. Sunahara</u> , Y. Sentoku, and Y. Kitagawa,
題	目	Repetitive 1Hz Fast-Heating Fusion Driver HAMA Pumped by Diode Pumped Solid State Laser
論文	誌名	The review of laser engineering, Vol.42, pp.154-159,2014
著	者	M. Olazabal-Loumé, Ph. Nicolaï, G. Riazuelo, M. Grech, J. Breil, S. Fujioka, <u>A. Sunahara</u> , N. Borisenko and V. T. Tikhonchuk
題	目	Simulations of laser imprint reduction using underdense foams and its consequence on the hydrodynamic instability growth
論文	誌名	New J. Physics, Vol.15, 085033, 2013
○レーザー技術開発室		
著	者	K.Fujioka, T.Saiki, <u>S.Motokoshi</u> , Y.Fujimoto, H.Fujita, and <u>M.Nakatsuka</u>

福 市 R.Fujioka, F.Saiki, <u>S.Wotokosin</u>, F.Fujinoto, H.Fujinoto, H.Fujinoto,

著	者	Y.Honda, <u>S.Motokoshi</u> , T.Jitsuno, N.Miyanaga, K.Fujioka, <u>M.Nakatsuka</u> , and M.Yoshida
題	目	Temperature dependence of optical properties in Nd/Cr:YAG materials
論文	誌名	Journal of Luminescence, Vol.148, pp.342-346, 2014
著	者	K. Mikami, S. Motokoshi, T. Somekawa, T. Jitsuno, M. Fujita, and K. A. Tanaka
題	目	Laser-induced damage thresholds at different temperature for optical devices
論文	誌名	Proceedings of SPIE, Vol.8786, pp.87861J1-J9, 2013
著	者	K. Mikami, S. Motokoshi, T. Somekawa, T. Jitsuno, M. Fujita, and K. A. Tanaka
題	目	A theoretical analysis for temperature dependences of laser-induced damage threshold
論文	誌名	Proceeding of SPIE, Vol.8885, pp.88851T1-T9, 2013
著	者	K. Mikami, S. Motokoshi, T.Somekawa, T. Jitsuno, M. Fujita, and K. A. Tanaka
題	目	Temperature dependence of laser-induced damage threshold of optical coatings at different pulse widths
論文	誌名	Optical Express, Vol.21, pp.28719-28728, 2013

<u> </u>	ーエネルギー研究チーム
著 者	D. Li, K.Imasaki, Y.Izawa, S.Miyamoto, K.Horikawa, and T.Mochizyki
題目	Dispose of nuclear waste with Laser-Compton scattering gamma ray
会議名	International Conference on Laser Applications in Nuclear Engineering, Apr. 23-25, 2013, Pacifico Yokohama, Japan
著 者	D. Li, M. Hangyo, Z. Yang, Y. Wei, Y. Wang, D. Wang, and S. Miyamoto
題目	Dispersion characteristics of grating structure with composite materials
会議名	35th International Free Electron Laser Conference, Aug. 26-30, 2013, New York Marriott Marquis Hotel, USA
著 者	D. Li, M. Hangyo, Z. Yang, Y. Wei, Y. Wang, D. Wang, and S. Miyamoto
題目	Study on radiation from negative-index material
会議名	35th International Free Electron Laser Conference, Aug. 26-30, 2013, New York Marriott Marquis Hotel, USA
Oレーザ	ープロセス研究チーム
著者	K. Iyama,H. Furukawa, <u>H. Chosrowjan</u> , <u>T. Sakurai</u> , K. Tsubakimoto, H. Yoshida, H. Fujita, <u>M. Fujita</u> , N. Miyanaga, Y. Tamaoki, Y. Kato, and T. Kawashima
題目	400W Nd:YAG composite ceramic thin-disc laser in 10ns pulse at 167kHz
会議名	Photonics West, Solid State Lasers XXIII: Technology and Devices, Feb. 3, 2014, Moscone Center, San Francisco, USA
著者	H. Fujita, K. Iyama, R. Bhushan, K. Tsubakimoto, H. Yoshida, <u>M. Fujita</u> , N. Miyanaga, and T. Kawashima
題目	Development of a kW class Nd:YAG ceramic thin disc laser for advanced laser machining
会議名	The 2nd Advance Lasers and Photon Sources, Apr. 25, 2013, Pacifico Yokohama, Japan
著 者	M. Fujita, T. Somekawa, and N. Miyanaga
題目	Micromachining of CFRP with ultra-short laser pulses
会議名	Laser Processing for CFRP and Composite Materials 2013, Apr. 24, 2013, Pacifico Yokohama, Japan
著 者	<u>T. Sakurai</u> ,H. Furuse, <u>H. Chosrowjan</u> , J. Kawanaka, N. Miyanaga, K. Hamamoto, T. Yamada, <u>M. Fujita</u> and <u>Y. Izawa</u>
題目	Temperature distribution characteristics in a cryogenic Yb:YAG TRAM laser medium
会議名	The 2nd Advance Lasers and Photon Sources, Apr. 23-25, 2013, Pacifico Yokohama, Japan
著者	M. Fujita, T. Somekawa, and N. Miyanaga
題目	Micromachining of CFRP with ultra-short laser pulses
会議名	Lasers in Manufacturing (LiM2013), May. 13-16, 2013, International Congress Center, Germany

著者	H. Furuse, <u>T. Sakurai, H. Chosrowjan</u> , J. Kawanaka, N. Miyanaga, <u>M. Fujit</u> a, S. Ishii, and <u>Y. Izawa</u>
題目	Conceptual of 10 kW high-average power laser system based on cryogenic Yb:YAG/YAG composite ceramics
会議名	The Eighth International Conference on Inertial Fusion Sciences and Applications (IFSA2013), Sep. 8-13, 2013, Nara Prefectural New Public Hall, Japan
著 者	M. Fujita, T. Somekawa, T. Samoto, H. Hirano, K. Hikichi, S. Tanaka, and M. Esashi
題目	Laser Selective Transfer Process of Barium Strontium Titanate (BST) on a Sapphire Substrate
会議名	32nd International Congress on Applications of Lasers & Electro-Optics, ICALEO2013, Oct. 6-10, 2013, Hyatt Regency Miami, USA
著 者	T. Somekawa, M. Kasaoka, F. Kawachi, Y. Nagano, M. Fujita and Y. Izawa
題目	Transformer Working Condition Assessment using Laser Raman Spectroscopy
会議名	2nd International Conference on Photonics, Optics and Laser Technology, Jan. 7-9, 2014, The Sana Lisbon Hotel, Portugal
<u> </u> レーザ	ー計測研究チーム
著 者	O. Kotyaev, Y. Shimada, M. Shinoda, N. Misaki, Y. Takahashi, and H. Takinami
題目	Laboratory and Field Tests of a Laser-Based Systemfor Remote Non-Destructive Inspection of Transportation Tunnels
会議名	3rd International Symposium on Laser Ultrasonics and Advanced Sensing (LU2013), Jun. 25-28, 2013, Pacifico Yokohama, Japan
著 者	H. Tachibana, K. Nakamoto, Y. Shimada, O. Kotyaev, Y. Yamaguchi and S. Hirose
題目	Non-Destructive Inspections for a Steel Plate Bonding Method
会議名	The 12th Japan-Korea Joint Symposium on Steel Bridges, Aug. 22-24, 2013, Okinawa University, Japan
著者	N. Misaki, T. Asakura, H. Takinami, <u>Y. Shimada, O. Kotyaev</u> , M. Shinoda, H. Sakamoto, Y. Takahashi, and Y. Sakamoto
題目	Development of non-destructive inspection method for concrete elements in tunnel lining using remote laser sensing
会議名	1st International Conference on Civil and Building Engineering Informatics 2013, 2013, Nov. 7-18, 2013, Tokyo International Exchange Center, Japan
+++ +*	N. Misaki, T. Asakura, H. Takinami, Y. Shimada, O. Kotyaev, M. Shinoda,

 H. Sakamoto, Y. Takahashi, and Y. Sakamoto
 Development of Non-destructive Inspection Method for Concrete Elements in Tunnel Linings Using Remote Laser Sensing

者

著

- 会議名 World Congress on Railway Research 2013, Nov. 25-28, 2013, Sydney Convention Center, Australia
- 著者S. Kurahashi, Y. Shimada, O. Kotyaev, T. Norimatsu1, Y. Kono, S. Nakata and
M. Ishii題目Measurement of Depth of Surface Cracks in Concrete by Laser-Ultrasonic Technique
1st International Conference on Civil and Building Engineering Informatics 2013, No.会議名7.10.2012. The Later time IE.

7-18, 2013, Tokyo International Exchange Center, Japan

○理論・シミュレーションチーム

著 者	A. Sunahara
題目	Modeling of reactor related physics by the numerical simulation
会議名	Partnerships for International Research and Education (PIRE), Jun. 3-5, 2013, RIHGA
	Royal Hotel Kyoto, Japan
女 女	A. Sunahara, T. Johzaki, H. Nagatomo, K. Mima, H. Shiraga, H. Azechi, Y. Mori, and
有1	Y. Kitagawa
題目	Direct heating of imploded plasma in the fast ignition
公業々	8th International conference on Inertial Fusion Science and Applications, Sep.8-13,
云硪石	2013, Nara Prefectural New Public Hall, Japan
著 者	A. Sunahara, T. Johzaki, H. Nagatomo, K. Mima, H. Shiraga, and H. Azechi
題目	Direct heating of imploded plasma in the fast ignition
会議名	Fast Ignition Workshop, Sep.16-18, 2013, Kishu-Minaber RoyalHotel, Japan
玉 去	A. Sunahara, T. Johzaki, H. Sakagami, H. Nagatomo, K. Mima, Y. Arikawa, S. Fujioka,
有日	H. Shiraga, H. Azechi, FIREX project
題目	Direct heating of imploded plasma by ultra-intense laser in the fast ignition scheme
会議名	55th Annual Meeting of the APS DPP Meeting, Nov.10-16, 2013, Denver, CO, USA
著 者	A Sunahara, K. Takaki, K. Kageyama, T. Yabuuchi, and K. Tanaka
題目	Hydro simulation of materials irradiated by lasers or charged particles
△ 議夕	The 12th Asia Pacific Physics Conference of AAPPS, Jun. 14-19 2013, Makuhari Messe
云哦石	Intenational Convention Complex, Japan
<u> </u>	一技術開発室
莱 耂	Y. Honda, S. Motokoshi, T. Jitsuno, N. Miyanaga, K. Fujioka, M. Nakatsuka, and
有有	M. Yoshida
題目	Analysis of energy transfer process in Nd/Cr:YAG materials

会議名		The 2nd Advance Lasers and Photon Source, Apr. 23-25, 2013, Pacifico Yokohama,
		Japan
著	者	T. Isshiki, <u>S. Motokoshi</u> , K. Fujioka, T. Jitsuno, M. Murakami, and M. Yoshida
題	目	Analysis of fluorescence for Nd:CNGG powder

会議名 The 2nd Advance Lasers and Photon Source, Apr. 23-25, 2013, Pacifico Yokohama, Japan

著	者	K. Mikami, S. Motokoshi, T. Somekawa, T. Jitsuno, M. Fujita, and K. A. Tanaka
題	目	A theoretical analysis for temperature dependences of laser-induced damage threshold
会議名	XLV Annual Symposium on Optical Materials for High Power Lasers, Sep. 22-25, 2013	
	敗 ⁄口	Colorado, USA
著	者	S. Motokoshi, K. Mikami, and T. Jitsuno

題	目	Database on damage thresholds for dichroic mirrors of 1064nm and 532nm
会議	名	XLV Annual Symposium on Optical Materials for High Power Lasers, Sep. 22-25, 2013. Colorado, USA
著	者	K. Mikami, <u>S. Motokoshi, T. Somekawa</u> , T. Jitsuno, <u>M. Fujita</u> , and K. A. Tanaka

- 題 目 Measurement and calculation of laser-induced damage threshold at different temperature for optical coating
- 会議名 The 2nd Advance Lasers and Photon Source, Apr. 23-25, 2013, Pacifico Yokohama, Japan

著者	Y. Matsuura, Y. Kuroki, K. Kuroda, T. Kiriyama, T. Kamimura, K. Mikami, <u>S. Motokoshi</u> , and T. Jitsuno
題目	Effects of subsurface removal on surface damage resistance of optical coatings in deep- UV wavelength
会議名	XLV Annual Symposium on Optical Materials for High Power Lasers, Sep. 22-25, 2013 Colorado, USA
著者	H. Murakami, T. Jitsuno, K. Kato, K. Mikami, <u>S. Motokoshi</u> , T. Kawasaki, N. Miyanaga, and H. Azechi
題目	Quantitative study of effect of contaminations on the damage threshold in optical coating
会議名	XLV Annual Symposium on Optical Materials for High Power Lasers, Sep. 22-25, 2013 Colorado, USA
著者	Y. Honda, <u>S. Motokoshi</u> , T. Jitsuno, N. Miyanaga, K. Fujioka, M. Nakatsuka, M. Yoshida
題目	Energy transfer process for Nd/Cr:YAG ceramics
会議名	The 9th Laser Ceramics Symposium, Dec. 2-6, 2013, Daejeon, Korea

○レーザーエネルギー研究チーム

学
5月8日-
ンパス
京田辺
京田辺

○レーザープロセス研究チーム

著 者	藤田雅之
題目	レーザーの加工応用
会議名	レーザー技術推進センター平成25年度研修、2014年3月15日、大阪大学レー ザーエネルギー学研究センター
著 者	笠岡誠、 <u>染川智弘</u> 、 <u>藤田雅之、井澤靖和</u> 、永野芳智
題目	レーザーラマン分光法によるフルフラール分析
会議名	平成26年電気学会全国大会、2013年3月18日-20日、愛媛大学 城北キャンパス
著 者	<u>染川智弘</u> 、笠岡誠、永野芳智、 <u>藤田雅之、井澤靖和</u>
題目	レーザーラマン分光法による変圧器油中フルフラールの分析
会議名	第61回応用物理学会春季学術講演会、2014年3月17日-20日、青山学院大学相模 原キャンパス
著 者	松隈啓、、鵜籠照之、吉田健祐、浦辺祥吾、李超剛、藤岡慎介、西村博明、 佐藤英児、 <u>染川智弘</u> 、柳田達哉
題目	レーザー駆動EUV光源プラズマのレーザー吸収率測定
会議名	第61回応用物理学会春季学術講演会、2014年3月17日-20日、青山学院大学相模 原キャンパス

著 者	藤田雅之
題目	加工用レーザとその発振原理およびビーム特性:超短パルスレーザとその応用
会議名	中部レーザ応用技術研究会第26回レーザ加工技術講座、2014年3月25日、株式 会社最新レーザ技術研究センター
著 者	<u>ハイク コスロービアン、谷口誠治、藤田雅之</u> 、椿本幸治、吉田英次、 宮永害明 井澤靖和
	西小恩切、 <u>升倖明仲</u> 光 - 松山間とののファンジルズナナロンと手たマックインシントンシント
題目	単一検出器とSPGDアルコリスムを用いた重ねアハーナキコピーレントピーム 結合技術
会議名	第61回応用物理学会春季学術講演会、2014年3月17日-20日、青山学院大学相模 原キャンパス
著 者	藤田雅之
題目	レーザー加工の基礎(1) 世界の産業用レーザーとレーザー加工技術の動向
会議名	レーザーエキスポ2013特別技術セミナー、2013年4月25日、パシフィコ横浜
著 者	藤田雅之
題目	レーザー加工の基礎
ム業々	短パルスレーザー加工・講義と実習、2013年7月22日、大阪大学テクノアライ
云藏名	アンス棟
著 者	藤田雅之
題目	高輝度レーザーによる物質改質・加工
会議名	第51回放射線科学研究会、2013年7月19日、住友クラブ
著 者	笠岡誠、 <u>染川智弘</u> 、 <u>藤田雅之、井澤靖和</u> 、河内二三夫、永野芳智
題目	レーザーラマン分光法による絶縁油中ガス成分の直接測定
会議名	平成25年電気学会電力・エネルギー部門大会、2013年8月27日-29日、朱鷺メッセ新潟コンベンションセンター
著 者	<u>染川智弘</u> 、眞子直弘、久世宏明、 <u>藤田雅之</u>
題目	コヒーレント白色光を用いた水蒸気差分吸収ライダーの開発
会議名	第74回応用物理学会秋季学術講演会、2013年9月16日-20日、同志社大学京田辺 キャンパス
著 者	佐藤悠、高橋真弘、 <u>染川智弘</u>
題目	ラマンライダーによる水蒸気の昼夜連続観測および数値予報モデルへの水蒸気 同化
会議名	土木学会平成25年度全国大会 第68回年次学術講演会、2013年9月4日-5日、日本大学生産工学部津田沼キャンパス
著 者	佐藤悠、 <u>染川智弘</u> 、高橋真弘
題目	ラマンライダーを用いた数値予報モデルへの水蒸気データ同化
会議名	第31回レーザーセンシングシンポジウム、2013年9月12日-13日、ホテルおかだ
著者	<u>櫻井俊光、ハイク コスロービアン、染川智弘、藤田雅之</u> 、本山秀明、 渡辺興亜、 <u>井澤靖和</u>
題目	レーザーによる氷の融解に関する研究 -氷床の底に生きる生命体の検出を目 指して-
会議名	雪氷研究大会(2013・北見)、2013年9月17日-21日、北見工業大学

著 者	<u>ハイク コスロービアン、染川智弘、藤田雅之、井澤靖和</u> 、石井伸也
題目	空間変調器による5ビームコヒーレント結合
公業々	第74回応用物理学会秋季学術講演会、2013年9月16日-20日、同志社大学京田辺
云硪石	キャンパス
著 者	<u>櫻井俊光、谷口誠治、本越伸二、染川智弘</u> 、吉村義隆、瀬川高弘、本山秀明、 <u>藤田雅之</u>
題目	紫外レーザーを用いた氷コア内微生物のラベルフリー計測
会議名	雪氷研究大会(2013・北見)、2013年9月17日-21日、北見工業大学
著 者	<u>染川智弘</u> 、竹内智紀、 <u>藤田雅之</u>
題目	水中レーザーリモートセンシングに向けたCO2気泡のラマン分光測定
会議名	第31回レーザーセンシングシンポジウム、2013年9月12日-13日、ホテルおかだ
著 者	藤田雅之
題目	加工・計測・メディカル応用の最新動向
会議名	インターオプト2013光技術動向セミナ-、2013年10月17日、パシフィコ横浜
著 者	<u>染川智弘</u> 、笠岡 誠、河内二三夫、永野芳智、 <u>藤田雅之</u> 、 <u>井澤靖和</u>
題目	レーザーラマン分光法によるる変圧器油中アセチレン分析
会議名	日本分光学会年次講演会、2014年11月19日-21日、大阪大学豊中キャンパス 基 礎工学部国際棟Σホール
著 者	藤田雅之
題目	レーザー加工の最新動向
<u> </u> 今議 夕	サイエンスエキスポ2013・加工計測コンソーシアム公開シンポジウム、2013年
ム哦1	11月13日、インテックス大阪
著者	大藪幾美、飯塚芳徳、植村立、平林幹啓、三宅隆之、本山秀明、 <u>櫻井俊光</u> 、 鈴木利孝、本堂武夫
題目	最終退氷期の南極内陸部における硫酸塩フラックスと気温との関係
会議名	気水圏シンポジウム、2013年11月12日、国立極地研究所
著者	藤田雅之
題目	短パルスレーザー加工の基礎と応用事例
会議名	レーザー加工とビジネススキルセミナー、2013年11月21日、大阪大学テクノア ライアンス棟
著者	東久美子、平林幹啓、本山秀明、三宅隆之、倉本隆之、植村立、川村賢二、 Fredric Parrenin、鈴木香寿恵、飯塚芳徳、鈴木啓助、五十嵐誠、藤井理行、 鈴木利孝、堀川信一郎、河野美香、藤田耕二、 <u>櫻井俊光</u> 、小端拓郎
題目	南極ドームふじコアの化学成分が示す過去70万年の環境変動
会議名	気水圏シンポジウム、2013年11月12日、国立極地研究所
著 者	櫻井俊光
題目	SRSを利用した水溶液中の水分子挙動に関する研究
会議名	H2Oを科学する2013、2013年12月2日-3日、北海道大学低温科学研究所
著 者	伊山功一、 <u>古河裕之、櫻井俊光</u> 、 <u>ハイク コスロービアン</u> 、椿本孝治、 吉田英次、藤田尚徳、 <u>藤田雅之</u> 、宮永憲明、川嶋利幸
題目	kW級Nd:YAGコンポジットセラミクスシンディスクレーザー増幅器の開発
会議名	レーザー学会創立40周年記念学術講演会第34回年次大会、2014年1月21日、北 九州国際会議場

著 者	<u>染川智弘</u> 、笠岡誠、河内二士夫、永野芳智、 <u>藤田雅之</u> 、 <u>井澤靖和</u>
題目	レーザーラマン分光法による変圧器油中アセチレン分析
会議名	レーザー学会創立40周年記念学術講演会第34回年次大会、2014年1月20日-22 日、北九州国際会議場
著 者	<u>ハイク コスロービアン</u> 、石井 伸也
題目	高出力、タイル状開口コヒーレントビーム結合のため新技術
会議名	レーザー学会創立40周年記念学術講演会第34回年次大会、2014年1月20日-22 日、北九州国際会議場
著 者	<u>染川智弘</u> 、眞子直弘、久世宏明
題目	コヒーレント白色光を用いた水蒸気差分吸収ライダーの開発
会議名	第16回環境リモートセンシングシンポジウム、2013年2月21日、千葉大学けや き会館
++ ++	
者有	
者 題 目	<u>藤田推之</u> 短パルスレーザー加工の基礎と応用事例

○レーザー計測研究チーム

著 者	<u>島田義則、オレグコチャエフ</u> 、御崎哲一、高橋康将、瀧浪秀元、篠田昌弘
題目	レーザーを用いたトンネル覆エコンクリート欠陥検査技術の開発
会議名	平成25年度電気学会全国大会、2014年3月20日-22日、愛媛大学
著者	<u>島田義則、オレグコチャエフ</u> 、篠田昌弘、江原季映、御崎哲一、髙橋康将、 瀧浪秀元、江本茂夫
題目	レーザーリモートセンシング装置を用いたコンクリート欠陥探傷実験結果(2)
会議名	土木学会平成25年度全国大会第68会年次学術講演会、2013年9月4日-5日、日本 大学生産工学部津田沼キャンパス
著 者	御崎哲一、瀧浪秀元、髙橋康将、朝倉俊弘、 <u>島田義則</u> 、 <u>オレグコチャエフ</u> 、 篠田昌弘、江原季映,江本茂夫
題目	レーザーリモートセンシング装置を用いたコンクリート欠陥探傷実験結果につ いて
会議名	土木学会平成25年度全国大会第68会年次学術講演会、2013年9月4日-5日、日本 大学生産工学部津田沼キャンパス
著 者	<u>島田義則、オレグコチャエフ</u> 、御崎哲一、瀧浪秀元、髙橋康将、篠田昌弘、 江本茂夫
題目	レーザーを用いたコンクリート健全度診断装置の開発
会議名	平成25年度電気学会C部門大会、2013年9月4日-7日、北見工業大学
著 者	<u>島田義則、谷口誠治、本越伸二</u>
題目	レーザーを用いた碍子表面塩分計測
会議名	レーザー学会創立40周年記念学術講演会第34回年次大会、2014年1月20日-22 日、北九州国際会議場
著者	御崎哲一、高橋康将、瀧浪秀元、 <u>島田義則</u> 、 <u>オレグ コチャエフ</u> 、江原季映、 篠田昌弘
題目	レーザーを用いたトンネル覆エコンクリート欠陥検査法の研究
会議名	レーザー学会創立40周年記念学術講演会第34回年次大会、2014年1月20日-22 日、北九州国際会議場

○レーザーバイオ化学研究チーム

著 者	<u>谷口誠治</u> 、岡田竹広、出島満、佐伯拓
題目	液中レーザーアブレーション法による還元金属ナノ粒子の作成と水素生産への 応用
会議名	日本化学会第94春季年会、2014年3月27日-30日、名古屋大学東山キャンパス
著 者	<u>谷口誠治</u> 、佐伯拓、岡田竹広
題目	液中レーザーアブレーション法による還元鉄ナノ粒子の作成と水素生産への 応用
会議名	第61回応用物理学会春季学術講演会、2014年3月17日-20日、青山学院大学相模 原キャンパス
著 者	佐伯拓、 <u>谷口誠治</u> 、出島満、内田成明、中村和広、西川侑介
題目	液中レーザーアブレーション法による酸化マグネシウムの還元
会議名	レーザー学会創立40周年記念学術講演会第34回年次大会、2014年1月20日-22 日、北九州国際会議場
著 者	佐伯拓、内田成明、狩田達也、中村和広、西川侑介、 <u>谷口誠治</u> 、飯田幸雄
題目	還元マグネシウムペースト焼成板を用いたリサイクル可能な空気電池の特性評 価
会議名	レーザー学会創立40周年記念学術講演会第34回年次大会、2014年1月20日-22 日、北九州国際会議場

○理論・シミュレーションチーム

著者	<u>砂原淳、中村龍史</u> 、西原功修、佐々木明
題目	プリパルスレーザー照射時のドロップレットの挙動
会議名	第61回応用物理学会春季学術講演会、2014年3月17日-20日、青山学院大学相模
	原キャンパス
著者	<u>古河裕之</u> 、乗松孝好
題目	レーザー核融合炉チェンバー第一壁の液体金属のアブレーションに関する2次
	元シミュレーション
会議名	日本物理学会第69回年次大会、2014年3月27日-30日、東海大学湘南キャンパス
著 者	佐々木明、西原功修、 <u>砂原淳</u> 、 <u>古河裕之</u> 、西川亘、小池文博
題目	EUV 光源の最適化のためのレーザープラズマ相互作用の初期過程のモデリング
	についての考察
会議名	第74回応用物理学会秋季学術講演会、2013年9月16日-20日、同志社大学京田辺
	キャンパス
著 者	<u>砂原淳</u> 、西原功修、佐々木明
題目	EUV光源の発光効率の向上
会議名	第74回応用物理学会秋季学術講演会、2013年9月16日-20日、同志社大学京田辺
	キャンパス
著者	伊山功一、Bhushan Ravi、 <u>古河裕之、ハイク コスロービアン</u> 、 <u>櫻井俊光</u> 、
	椿本孝治、吉田英次、藤田尚徳、藤田雅之、宮永憲明、川嶋利幸
題目	kW級Nd:YAGコンポジットセラミクスシンディスクレーザーの開発(3)
会議名	第74回応用物理学会秋季学術講演会、2013年9月16日-20日、同志社大学京田辺
	キャンパス

有日	<u>百河俗乙</u> 、邰谷字、甲野人志
題目	レーザーピーニングにおける多次元効果等の評価II
会議名	第74回応用物理学会秋季学術講演会、2013年9月16日-20日、同志社大学京田辺 キャンパス
著 者	<u>古河裕之</u> 、伊山功一、藤田尚徳、宮永憲明
題目	高平均出力固体レーザーの熱効果解析
会議名	第74回応用物理学会秋季学術講演会、2013年9月16日-20日、同志社大学京田辺 キャンパス
著者	<u>砂原淳</u> 、城崎知至、坂上仁志、長友英夫、三間圀興、Zhang Zhe, 石原和大、 有川安信、藤岡慎介、白神宏之、疇地宏、FIREX project
題目	レーザー駆動高カレントによる高強度磁場生成時のコイルの輻射流体力学的特 性と磁場強度
会議名	日本物理学会第69回年次大会、2014年3月27日-30日、東海大学湘南キャンパス
著 者	<u>砂原淳</u> 、影山慶、高木一茂、薮内俊毅、田中和夫
題目	気体液体混合領域を考慮した金属のレーザーアブレーション
会議名	第27回数値流体力学シンポジウム、2013年12月17日-19日、名古屋大学豊田講堂
著 者	<u>砂原淳</u> 、藤岡慎介、P. Nicolai, M. Olazabal,城崎知至、長友英夫、藤本靖、 長井圭治、大西直文、白戸高志、白神宏之、乗松孝好
題目	高Z物質添加による高密度爆縮
会議名	レーザー学会第456回研究会及び核融合科学研究所双方向型共同研究合同研究 会、2014年1月9日、阪大レーザー研
著 者	砂原淳
비로 더	
題 日	局Z物質添加による高密度爆縮
	高Z物質添加による高密度爆縮 核融合科学研究所双方向型共同研究成果報告会、2014年1月23日、核融合科学 研究所
超 日 会議名 著	高Z物質添加による高密度爆縮 核融合科学研究所双方向型共同研究成果報告会、2014年1月23日、核融合科学 研究所 砂原淳、森芳孝、中山師生、花山良平、石井勝弘、沖原伸一朗、藤田和久、 北川米喜、関根尊史、栗田隆史、佐藤仲弘、川嶋利幸、菅博文、米田修、 中村直樹、近藤拓也、藤根学、掛布光孝、東博純、日置辰視、元廣友美、 西村靖彦、千徳靖彦、三浦永祐
題 日 会議名 著 者 題 目	高Z物質添加による高密度爆縮 核融合科学研究所双方向型共同研究成果報告会、2014年1月23日、核融合科学 研究所 <u>砂原淳</u> 、森芳孝、中山師生、花山良平、石井勝弘、沖原伸一朗、藤田和久、 北川米喜、関根尊史、栗田隆史、佐藤仲弘、川嶋利幸、菅博文、米田修、 中村直樹、近藤拓也、藤根学、掛布光孝、東博純、日置辰視、元廣友美、 西村靖彦、千徳靖彦、三浦永祐 高繰返し対向照射高速点火方式小型レーザー核融合の研究-炉心プラズマシ ミュレーションの現状-
題 会議 著 題 義 名 王 題 会 議 会	高Z物質添加による高密度爆縮 核融合科学研究所双方向型共同研究成果報告会、2014年1月23日、核融合科学 研究所 砂原淳、森芳孝、中山師生、花山良平、石井勝弘、沖原伸一朗、藤田和久、 北川米喜、関根尊史、栗田隆史、佐藤仲弘、川嶋利幸、菅博文、米田修、 中村直樹、近藤拓也、藤根学、掛布光孝、東博純、日置辰視、元廣友美、 西村靖彦、千徳靖彦、三浦永祐 高繰返し対向照射高速点火方式小型レーザー核融合の研究ー炉心プラズマシ ミュレーションの現状- 日本物理学会2013年秋季大会、2014年1月25日-28日、徳島大学
題 会議 者 題 会 著 月 名 著 月 名 著 月 名 著 月 名 著 月 名	高Z物質添加による高密度爆縮 核融合科学研究所双方向型共同研究成果報告会、2014年1月23日、核融合科学 研究所 <u>砂原淳</u> 、森芳孝、中山師生、花山良平、石井勝弘、沖原伸一朗、藤田和久、 北川米喜、関根尊史、栗田隆史、佐藤仲弘、川嶋利幸、菅博文、米田修、 中村直樹、近藤拓也、藤根学、掛布光孝、東博純、日置辰視、元廣友美、 西村靖彦、千徳靖彦、三浦永祐 高繰返し対向照射高速点火方式小型レーザー核融合の研究ー炉心プラズマシ ミュレーションの現状– 日本物理学会2013年秋季大会、2014年1月25日-28日、徳島大学 <u>砂原淳</u> 、城崎知至、坂上仁志、長友英夫、有川安信、藤岡慎介、白神宏之、 疇地宏、森芳孝、北川米喜
題 会 著 題 会 著 題 日 名 者 日 名 者 目	高Z物質添加による高密度爆縮 核融合科学研究所双方向型共同研究成果報告会、2014年1月23日、核融合科学 研究所 砂原淳、森芳孝、中山師生、花山良平、石井勝弘、沖原伸一朗、藤田和久、 北川米喜、関根尊史、栗田隆史、佐藤仲弘、川嶋利幸、菅博文、米田修、 中村直樹、近藤拓也、藤根学、掛布光孝、東博純、日置辰視、元廣友美、 西村靖彦、千徳靖彦、三浦永祐 高繰返し対向照射高速点火方式小型レーザー核融合の研究ー炉心プラズマシ ミュレーションの現状- 日本物理学会2013年秋季大会、2014年1月25日-28日、徳島大学 砂原淳、城崎知至、坂上仁志、長友英夫、有川安信、藤岡慎介、白神宏之、 疇地宏、森芳孝、北川米喜 高速点火における直接加熱
題云音名著題云著目名名日名名日名名日名名日名日名日名日名日名日名日名日名日名日名日名日名日名日名日名日名日日 <td< td=""><td>高Z物質添加による高密度爆縮 核融合科学研究所双方向型共同研究成果報告会、2014年1月23日、核融合科学 研究所 <u>砂原淳、森芳孝、中山師生、花山良平、石井勝弘、沖原伸一朗、藤田和久、</u> 北川米喜、関根尊史、栗田隆史、佐藤仲弘、川嶋利幸、菅博文、米田修、 中村直樹、近藤拓也、藤根学、掛布光孝、東博純、日置辰視、元廣友美、 西村靖彦、千徳靖彦、三浦永祐 高繰返し対向照射高速点火方式小型レーザー核融合の研究 - 炉心プラズマシ ミュレーションの現状 - 日本物理学会2013年秋季大会、2014年1月25日-28日、徳島大学 <u>砂原淳</u>、城崎知至、坂上仁志、長友英夫、有川安信、藤岡慎介、白神宏之、 疇地宏、森芳孝、北川米喜 高速点火における直接加熱 プラズマ・核融合学会第30回年会、2013年12月3日-6日、東京工業大学大岡山 キャンパス</td></td<>	高Z物質添加による高密度爆縮 核融合科学研究所双方向型共同研究成果報告会、2014年1月23日、核融合科学 研究所 <u>砂原淳、森芳孝、中山師生、花山良平、石井勝弘、沖原伸一朗、藤田和久、</u> 北川米喜、関根尊史、栗田隆史、佐藤仲弘、川嶋利幸、菅博文、米田修、 中村直樹、近藤拓也、藤根学、掛布光孝、東博純、日置辰視、元廣友美、 西村靖彦、千徳靖彦、三浦永祐 高繰返し対向照射高速点火方式小型レーザー核融合の研究 - 炉心プラズマシ ミュレーションの現状 - 日本物理学会2013年秋季大会、2014年1月25日-28日、徳島大学 <u>砂原淳</u> 、城崎知至、坂上仁志、長友英夫、有川安信、藤岡慎介、白神宏之、 疇地宏、森芳孝、北川米喜 高速点火における直接加熱 プラズマ・核融合学会第30回年会、2013年12月3日-6日、東京工業大学大岡山 キャンパス
 題 会 著 題 会 著 題 会 著 題 名 著 目 名 者 目 名 者 	局Z物質添加による高密度爆縮 核融合科学研究所双方向型共同研究成果報告会、2014年1月23日、核融合科学 研究所 <u>砂原淳</u> 、森芳孝、中山師生、花山良平、石井勝弘、沖原伸一朗、藤田和久、 北川米喜、関根尊史、栗田隆史、佐藤仲弘、川嶋利幸、菅博文、米田修、 中村直樹、近藤拓也、藤根学、掛布光孝、東博純、日置辰視、元廣友美、 西村靖彦、千徳靖彦、三浦永祐 高繰返し対向照射高速点火方式小型レーザー核融合の研究ー炉心プラズマシ ミュレーションの現状- 日本物理学会2013年秋季大会、2014年1月25日-28日、徳島大学 <u>砂原淳</u> 、城崎知至、坂上仁志、長友英夫、有川安信、藤岡慎介、白神宏之、 疇地宏、森芳孝、北川米喜 高速点火における直接加熱 プラズマ・核融合学会第30回年会、2013年12月3日-6日、東京工業大学大岡山 キャンパス <u>砂原淳</u>
 題 会 著 題 会 書 題 合 題 合 書 題 合 書 題 合 書 題 合 書 題 合 題 合	局Z物質添加による高密皮爆縮 核融合科学研究所双方向型共同研究成果報告会、2014年1月23日、核融合科学 研究所 <u>砂原淳</u> 、森芳孝、中山師生、花山良平、石井勝弘、沖原伸一朗、藤田和久、 北川米喜、関根尊史、栗田隆史、佐藤仲弘、川嶋利幸、菅博文、米田修、 中村直樹、近藤拓也、藤根学、掛布光孝、東博純、日置辰視、元廣友美、 西村靖彦、千徳靖彦、三浦永祐 高繰返し対向照射高速点火方式小型レーザー核融合の研究ー炉心プラズマシ ミュレーションの現状- 日本物理学会2013年秋季大会、2014年1月25日-28日、徳島大学 <u>砂原淳</u> 、城崎知至、坂上仁志、長友英夫、有川安信、藤岡慎介、白神宏之、 疇地宏、森芳孝、北川米喜 高速点火における直接加熱 プラズマ・核融合学会第30回年会、2013年12月3日-6日、東京工業大学大岡山 キャンパス <u>砂原淳</u> 高速点火レーザー核融合における高速イオンの利用

著 者	砂原淳
題目	放射流体シミュレーションによるレーザー生成スズプラズマモデリングの 現状
会議名	レーザー学会第450回研究会、2013年10月22日、早稲田大学
著 者	<u>古河裕之</u> 、乗松孝好
題目	レーザー核融合炉チェンバー第一壁の液体金属のアブレーションに関する2次 元シミュレーション
会議名	レーザー学会第456回研究会及び核融合科学研究所双方向型共同研究合同研究 会、2014年1月9日、大阪大学レーザーエネルギー学研究センター

○レーザー技術開発室

著 者	本田能之、 <u>本越伸二</u> 、實野孝久、宮永憲明、藤岡加奈、 <u>中塚正大</u> 、吉田実
題目	Nd/Cr:YAG材料のエネルギー移乗過程III
会議名	第61回応用物理学会春季学術講演会、2014年3月17日-20日、青山学院大学相模 原キャンパス
著 者	本田能之、 <u>本越伸二</u> 、實野孝久、宮永憲明、藤岡加奈、 <u>中塚正大</u> 、吉田実
題目	Nd/Cr:YAG材料におけるエネルギー移乗の解析
会議名	レーザー学会第445回研究会、2013年7月16日、ホテル阪急エキスポパーク
著 者	本田能之、 <u>本越伸二</u> 、實野孝久、宮永憲明、藤岡加奈、 <u>中塚正大</u> 、吉田実
題目	Nd/Cr:YAG材料のエネルギー移乗過程II
会議名	第74回応用物理学会秋季学術講演会、2013年9月16日-20日、同志社大学京田辺 キャンパス
著 者	秋田将幸、吉田実、本田能之、 <u>本越伸二</u> 、實野孝久
題目	Cr ³⁺ :YAGとCr ³⁺ :Al ₂ O ₃ の蛍光特性の比較
会議名	レーザー学会創立40周年記念学術講演会第34回年次大会、2014年1月20日-22 日、北九州国際会議場
著 者	本田能之、 <u>本越伸二</u> 、實野孝久、宮永憲明、藤岡加奈、 <u>中塚正大</u> 、吉田実
題目	Nd/Cr:YAGセラミックにおける小信号利得の温度依存性
会議名	レーザー学会創立40周年記念学術講演会第34回年次大会、2014年1月20日-22 日、北九州国際会議場
著 者	一色択真、 <u>本越伸二</u> 、藤岡加奈、實野孝久、村上匡且、吉田実
題目	Nd:CNGGセラミック材料の蛍光特性
会議名	レーザー学会創立40周年記念学術講演会第34回年次大会、2014年1月20日-22 日、北九州国際会議場

事業報告書

事業報告書

(平成25年度)

概況

レーザー技術総合研究所は、レーザーおよびその関連産業の振興を図り、我が国 の学術の進展と科学技術の発展に貢献することを責務とし、レーザーとその応用に 関する研究開発、調査、情報の収集・提供、人材の養成などの事業を鋭意推進すべ く活動してきた。平成 25 年度においても関係各位の協力を得て、概ね計画どおり 活動することができた。

【平成25年度の主な成果】

平成 22 年度から開始した産業用レーザー開発研究においては、次世代素材等レ ーザー加工技術開発プロジェクトに参画した。大阪大学レーザーエネルギー学研究 センターで試作されるコンポジットセラミック増幅器の冷却特性の計算機解析・評 価を進めるとともに、ファイバー増幅器の特性解析を行う計算コードの開発に着手 し、高出力、高繰り返し、短パルスレーザーシステムにおける波長変換特性の解析 を進めた。また、引き続き kW 級高平均出力を実現するための増幅器設計およびビ ーム結合技術の開発も進めた。

レーザーエネルギー研究チーム、レーザープロセス研究チーム、レーザー計測研 究チーム、レーザーバイオ化学研究チームおよび理論・シミュレーションチームで は、多分野にわたるこれまでの研究をさらに発展させ、研究成果を学会や研究会等 で積極的に発信した。

レーザー超音波探傷技術に関する研究では、実用化に向けた小型化を図り、新幹 線トンネル内の中央通路を走行出来る装置によるトンネル内コンクリート欠陥検出 実験を行った。また、高速道路高架橋欠陥検出への適用についても検討を進めた。

平成 25 年度より開始した極端紫外光源開発研究では、半導体リソグラフィ用量 産光源開発のための EUV(極端紫外光)光源プラズマの解析及び条件最適化を行っ た。

その他主な研究テーマとしては、薄膜 CFRP(炭素繊維強化プラスチック)へのレ ーザー加工の実証など低炭素社会に資する研究、レーザーブレークダウン分光法や ラマン分光法を取り入れた表面付着物や溶液中の成分の高感度検出技術の開発、テ ラヘルツ波を用いた内部診断の研究を進めた。

レーザー技術開発室においては、多くの企業の参加を得て、レーザー用光学素子
の損傷評価試験を実施し、データベース化を進めることができた。

普及啓発活動では、研究成果報告会の開催(7月)、機関誌「レーザークロス」の発行(月刊)、ホームページおよびメール配信による情報発信、LASER EXPO 2013 への出展(4月)などを実施し、研究成果等の積極的な発信に努めた。

1. 役員等の異動

(理事・監事)

年月日	就 任	退 任
H25. 4.16	監事 岡田 勉	監事 岩西 徹
H25. 6.19	理事 梅田 賢治	理事 遠山 眞
	理事 豊留 昭宏	理事 鈴木 正
H25. 8. 8	理事 小野寺 正洋	理事 吉澤 厚文
	理事 北山 泰久	理事 佐藤 正一

(評議員)

年月日	就 任	退 任
H25. 7.11	大塚 茂樹	高杉 政博

2. 役員会等の開催

(1)理事会

第4回 理 事 会 (平成25年5月29日 大阪科学技術センター) 決議事項

·平成24年度事業報告書

・平成24年度財務諸表及び収支計算書

- ・基本財産の運用
- ・定時評議員会の日時及び場所並びに目的である事項

報告事項

- 監事の選任報告
- ・職務執行状況の報告
- 第5回 理 事 会 (平成25年7月29日みなし決議) 決議事項
 - ・評議員選定委員会委員の選任
 - ・臨時の第4回評議員会の招集及び目的である事項等
 - 報告事項

・評議員の選任

第6回理事会 (平成26年3月3日 関電会館)

決議事項

- ·平成26年度事業計画書
- ·平成26年度予算書
- ・諸規程の制定
- 報告事項
- ・職務執行状況の報告
- (2)評議員会
 - 第2回 評議員会 (平成25年4月16日みなし決議) 決議事項
 - ・監事の選任
 - 第3回 評議員会 (平成25年6月19日 関電会館)決議事項
 - ・平成24年度財務諸表及び収支計算書
 - ・理事の選任
 - 報告事項
 - ·平成24年度事業報告
 - 第3回、第4回理事会の決議内容
 - 第4回 評議員会 (平成25年8月8日みなし決議)決議事項
 - ・理事の選任
 - 報告事項
 - ・第2回評議員選定委員会の決議内容
 - ・第2回理事会の決議内容

(3)評議員選定委員会

第2回 評議員選定委員会 (平成25年7月11日 大阪大学)

3. 賛助会員状況

平成 25 年度末会員数 40 社 93 口

4. 学会および論文発表

学会発表	98 件	(国内:68件、	国外:30件)
論文発表	50 件	(国内: 8件、	国外:42件)

5. 特許等出願件数

平成 25 年度出願件数	1件			
平成25年度末特許保有件	28 件	(登録済:16件、	公開済:	10 件

未公開: 2件)

I 研究開発および調査事業

研究開発の推進と成果の拡充を図るため、研究部門では下記の事業活動を実施し た。

1. 研究調査事業

【産業用レーザー開発プロジェクト研究】

省エネルギー効果が期待されるレーザー加工技術の発展に活用するため、kW 級 産業用レーザーに必要とされる基盤技術について研究を進めた。

(1) 大出力レーザーの開発

産業利用を目的とした大出力レーザーの開発を進め、その応用を検討した。高平 均出力を実現するために、増幅媒質の温度計測に基づく冷却手法の評価、システム 構築技術の検討を行った。

(2) 大出力レーザーの熱解析

kW 級大出力レーザー増幅においてファイバー増幅器の特性解析を行う計算コードの開発に着手すると共に、**kW** 級、高繰返し、短パルスレーザーシステムにおける波長変換特性の解析を行った。

(3) ビーム結合に関する研究

レーザーの大出力化において重要となるビーム結合技術に関する研究を引き続き 行った。同軸およびタイル状の複数ビームのコヒーレント結合を実証し、大出力化、 高平均出力化の可能性について検討した。

[関連する主な受託・共同研究]

- ・大出力レーザー開発に関する研究
- ・次世代素材等レーザー加工技術開発

【レーザーエネルギー研究チーム】

レーザーエネルギーの新しい応用分野を開拓するため、テラヘルツ放射源に関す る研究を行った。

(1) メタマテリアルによる電磁波放射基礎研究

従来の電子ビームを用いた電磁波放射の手法に負の屈折率を有するメタマテリア ルを導入し、従来の限界を打ち破る新型光源の可能性の検討を行った。メタマテリ アル平板における電磁モード存在条件、伝搬特性を解析した。

(2) テラヘルツによる診断・検査研究

テラヘルツ波はプラスチックや紙等に対する透過率が高く、生体に害を与えない ため、材料物性を調べるのに有用である。テラヘルツ波の発生、透過型計測用の実 験装置を立ち上げ、それを用いて電力設備用絶縁材料の透過特性を調べ、内部欠陥 検査への適用可能性を調べた。

[関連する主な受託・共同研究]

- ・テラヘルツ光源の開発研究
- ・テラヘルツ波による電力設備診断技術に関する調査研究
- ・メタマテリアルによるコヒーレント放射光の基礎研究

【レーザープロセス研究チーム】

低炭素社会に資するため、レーザー加工特性の評価試験を行い、基礎技術開発を行うとともに、レーザープロセスの高性能化に資する基盤技術を開発した。

(1) フェムト秒加工に関する研究

フェムト秒レーザーパルスを用いて金属・半導体等各種材料の加工特性に関する研究を進め、微細周期構造の応用について検討を行った。

(2) 低炭素社会に資するレーザー加工に関する研究

産業用部材の軽量化に期待される CFRP(炭素繊維強化プラスチック)への超短パ ルスレーザー加工の適用性の評価を行うと共に、省エネ電子機器に用いられる MEMS(微小電気機械システム)デバイス等へのレーザーを用いたマイクロ 3D プリ ンティングの検討を行った。

(3) レーザーによるナノ粒子生成技術の研究

パルスレーザーをエネルギー源とした金属酸化物(酸化鉄、酸化マグネシウム)の 酸化還元および微細化、水素発生技術の開発を進めた。また溶融塩中におけるナノ 粒子生成技術の開発に向け、金およびチタンを材料に用いた研究を進めた。

(4) レーザーを用いた氷雪分析に関する研究

氷雪を対象としたレーザー応用研究を進めた。極地氷コアのレーザー分析研究を 行い、また、構造物への着氷雪防止について検討を行った。

[関連する主な受託・共同研究]

- ・CFRPの微細加工に関する研究
- ・ 微細周期構造の応用研究
- ・極地氷床コアに含まれる微生物の分光解析
- ・液中レーザーアブレーションによる活性金属ナノ粒子生成と水素生産への応用
- ・液中レーザーアブレーション法によるナノ粒子生成: 溶融塩中の効果

【レーザー計測研究チーム】

レーザー応用計測・分析技術の高性能化に資する技術開発を行った。

(1) レーザー超音波探傷技術に関する研究

レーザー干渉を用いたコンクリート欠陥探傷等に必要な計測技術等の課題を明ら かにした。また、それを用いたコンクリート付帯物の欠陥検査等への技術展開を図 った。さらに計測手法の改善や装置の小型化を進めるとともに、高架橋検査への適 用可能性を検証した。

(2) レーザーを用いた成分分析の研究

レーザーブレークダウン分光法による表面付着物の定量計測や溶液中の成分分析 技術開発を行った。レーザーブレークダウン分光法による碍子表面付着物の元素分 析ならびにレーザーラマン分光法による CO₂およびアセチレン検出実験を実施し、 成分分析の高感度化を進めた。

(3) 高強度レーザーを用いた環境評価技術の研究

高強度レーザーを用いて、大気や水環境を遠隔で計測する基礎研究を行った。

[関連する主な受託・共同研究]

- ・レーザー計測システムの性能確認試験
- ・碍子塩分等レーザー測定装置開発研究
- ・高感度ダイナミックホログラム・レーザー超音波法を用いた欠陥検出に関する 研究
- ・レーザー探傷による補強橋梁床版欠陥部のリモートセンシング技術開発
- ・海底資源様物質に対する高強度レーザー分光開発
- ・レーザーラマン散乱を用いた海水溶存成分測定法の開発
- ・レーザーラマン法を用いた油中成分分析に関する研究
- ・ピコ秒・フェムト秒レーザーの大気ライダーへの応用可能性に関する研究

【レーザーバイオ化学研究チーム】

生体分子の光機能デバイスへの応用、および医療分野へのレーザー技術応用を目 的とし、超高速レーザー分光計測による蛋白質等生体物質の光機能解明に関する研 究を進めた。

(1)時間分解レーザー計測による光応答性蛋白質の研究

光活性黄色蛋白質(PYP)の超高速光反応過程を明らかにし光機能デバイスへの応 用を進めるため、サブピコ秒領域の時間分解円二色性計測法による PYP 変異体(ミ ュータント)の観測を行い、分子構造の時間変化を明らかにした。

(2) レーザー分光による生体内酵素の機能メカニズムの研究

生体の代謝機能に関わるマラリア原虫およびヒト由来の酵素(セリンヒドロキシ

転移酵素)の光物性を観測した。酵素の種類によりアミノ酸に対する光による機能阻 害効果が異なることから、機能阻害剤の光選択の可能性を明らかにした。

[関連する主な受託・共同研究]

- ・ヒト由来セリンヒドロキシ転移酵素(SHMT)の光反応過程の研究
- ・時間分解蛍光計測による蛋白質の機能阻害効果の研究

【理論・シミュレーションチーム】

各研究チームが行う実験研究に対して、理論・シミュレーションにより支援を行った。レーザープラズマに関連するコードを開発し、産業応用に有用なデータを提供した。

(1) EUV(極端紫外光)光源に関する理論的研究

半導体リソグラフィ用量産光源の実現ため、EUVプラズマの解析を行い、高出力 化の指針を与えた。

- (2) レーザー生成高密度プラズマの理論的研究 核融合爆縮流体シミュレーションを行い、高密度爆縮実験に対する指針を与えた。
- (3) レーザーアブレーションとその応用に関する理論的研究 相変化や凝集などを含め、様々の環境下でレーザーアブレーション過程をシミュ レーションできるコードの精緻化を図り、実験との比較を含む検討を行った。
- (4) レーザー核融合炉設計に関する理論的研究
 - レーザー核融合炉液体壁チェンバー内での金属蒸気の挙動を詳細に解析した。

[関連する主な受託・共同研究]

- ・EUV光源プラズマの解析
- ・核融合流体シミュレーション

【レーザー技術開発室】

高出力レーザーとその応用システムに共通する光学部品や光学材料の高性能化を めざして基礎技術開発を行った。レーザー損傷評価試験を実施し、「高耐力光学素子 研究会」を通して、レーザー損傷閾値のデータベース化を進めた。

(1) レーザー材料開発

太陽光励起レーザーへの適用に向けて、Nd/Cr:YAG セラミックス材料中のエネル ギー移乗過程を解析し、高温で高効率動作が期待できることを明らかにした。また、 広帯域発光が可能な Nd:CNGG 材料の透明セラミックス化試験を開始した。 (2) 高耐力光学部品開発

フェムト秒パルスに対するレーザー損傷しきい値を決定する要因について評価を進めた。

(3) レーザー損傷評価試験

技術相談窓口と連携し、展示会、ホームページなどを通して積極的に広報を行い、 11 社 18 件の依頼を受けた。また、損傷閾値のデータベース化を目的に、1064nm 用光学薄膜素子を対象に第 11 回、第 12 回の評価試験を実施した。

[関連する主な受託・共同研究]

・高耐力ミラーの開発

2. 各種研究会活動

当研究所の研究開発活動を効率的・発展的に推進させるため、関連各界の意見・ 情報収集の場として、さらにはわが国の研究活動の方向性について提言を発信する 場として、次のような研究会を開催し、当研究所の事業の活性化を図った。

[実施した主な研究会]

- ・次世代レーザー技術応用研究会
- ·高耐力光学素子研究会

3. 産学官連携の推進

ホームページ上の技術相談窓口等から受け付けた、企業の技術開発・改良に対す る技術支援、光学部品の損傷評価、微細加工、超音波診断などの相談・要望に対し、 積極的に取り組んだ。43件の技術相談に対応し、そのうち22件が受託研究へ結び 付いた。

また、広範に拡がるレーザー技術に関するニーズに対応するため、情報、人材、 技術等の交流を推進した。

学界との連携では、大阪大学レーザーエネルギー学研究センター等との共同研究 をはじめ、国内外の大学と積極的に連携を図りながら研究を行った。

産学官との連携では、企業、大学等と連携を図りながら、国等の公募事業に参画 した。

4. 関連団体との連携

(独)宇宙航空研究開発機構(JAXA)、(独)日本原子力研究開発機構(JAEA)、(財)光産 業技術振興協会(OITDA)、(財)大阪科学技術センター(OSTEC)、(財)近畿高エネルギ ー加工技術研究所(AMPI)、(財)製造科学技術センター(MSTC)、(社)レーザー学会 (LSJ)、韓国原子力研究所(KAERI)、韓国光技術院(KOPTI)など関連団体とも積極的 に情報交流や人的交流を図り、これら団体と連携してわが国のレーザー技術の発展と 普及に寄与する活動を推進した。

5. 公募研究

国等が公募を行っている各種競争的研究資金の獲得に努め、本年度は下記の採択 課題に参加、実施した。

(1) 次世代素材等レーザー加工技術開発プロジェクト

((独)新エネルギー・産業技術総合開発機構)

- (2) レーザー探傷による補強橋梁床版欠陥部のリモートセンシング技術開発 ((独)科学技術振興機構研究成果最適展開支援プログラム A-STEP FS タイプ)
- (3) 高効率 LPP 法 EUV 光源の実証開発 ((独)新エネルギー・産業技術総合開発機構 戦略 的省エネルギー技術革新プログラム 実証開発)

6. 受託研究

40 件の受託研究を実施した。(公募によるものを除く。技術相談によるものを含む。)

7. 補助事業

文部科学省の科学研究費補助金や民間団体の研究助成を活用し、以下のような研 究を実施した。

- (1) 高感度ダイナミックホログラム・レーザー超音波法を用いた欠陥検出に関する 研究(基盤研究 C)
- (2) 負の屈折率メタマテリアルによるコヒーレント放射光源研究開発(基盤研究 C)
- (3) パルスレーザーを利用したラマン分光法による、氷床コアに含まれる微粒子解 析の研究(若手 B)
- (4) 高速点火レーザー核融合における高速電子の発生と輸送の物理的制御(基盤研究C)
- (5) Two-beam probing laser-based system for remote inspection of unstable structures (基盤研究 C)
- (6) 海底資源探査・環境影響評価に向けたラマンライダーによる水中モニタリング技術の開発(若手 B)
- (7) パルスレーザーを利用した極地氷床コアに含まれる微生物の分光解析(住友財 団 環境研究助成)
- (8) メタマテリアルによる電子ビーム放射光の基礎研究(光科学技術振興財団研

究助成)

- (9) 液中レーザーアブレーションによる活性金属ナノ粒子生成と水素生産への応用(ひょうご科学技術協会 学術研究助成)
- (10) 氷コアに含まれる人為起源物質と生命環境起源物質の計測技術に関する研究(国際 科学技術財団研究助成)

Ⅱ 普及啓発活動事業

レーザー技術の普及啓発活動として、情報の発信・提供、人材交流などの事業を以下のとおり実施した。

1. 人材の育成

大学、関連研究機関、企業など、共同研究先や技術相談の依頼元から若手研究員 を受け入れ、技術指導を行うことにより、レーザー技術に関する人材育成を行った。

2. 研究成果報告会

東京ならびに大阪にて、平成 24 年度の研究成果を報告する研究成果報告会 (ILT2013)を開催した。

7月10日 千里ライフサイエンスセンター (大阪)

7月17日 日本科学未来館(東京)

3.機関誌等の発行

機関誌「Laser Cross」の月1回の発行、および、電子メールでの情報配信により、当研究所の研究成果やレーザーに関する国内外の研究開発動向など幅広い情報の発信を行った。

4. 展示会への出展

関係団体が主催する光技術やレーザーに関する展示会へ積極的に出展し、当研究 所の広報活動に務めた。

・LASER EXPO 2013 4月 24 日~26 日 パシフィコ横浜(神奈川)

5. 国際交流

海外のレーザー技術の開発動向や産業応用に関連した情報を収集し、また、レーザー関連団体や関係研究機関との情報交換・人材交流を図るため、計9の国際会議へ参加した。また、米国 Purdue 大学や韓国原子力研究所(KAERI)、韓国光技術院(KOPTI)等との共同研究を実施した。主なものは以下のとおり。

- (1) LiM2012 (5月, ドイツ)
- (2) ICALEO2013 (10月,米国)
- (3) 2013 International Workshop on EUV and Soft X-ray Sources

(11月,アイルランド)

- (4) 55th Annual Meeting of the APS Division of Plasma Physics (11 月, 米国)
- (5) PHOTOPTICS2014 (1月, ポルトガル)
- (6) 日米協力(RAIJIN)核融合炉工学共同研究(2月,米国 Purdue大学)

Ⅲ その他事業

1. IFE (慣性核融合エネルギー: Inertial Fusion Energy) フォーラム活動

慣性核融合エネルギー開発事業の推進をめざし、レーザー核融合実験炉設計委員 会活動およびレーザー核融合関連技術の普及のための講演会等を支援した。

2. 出版物の刊行

平成 24 年度の研究成果を年報にまとめ、刊行した。 ・「ILT2013 年報」(2012~2013) (平成 25 年 7 月発行)

3. 泰山賞の贈呈

7月の成果報告会にて第5回泰山賞の表彰式を行い、レーザー科学技術の分野で 永年にわたり抜群の功績を上げた個人に功績賞を、近年著しい業績を上げた個人に 進歩賞を贈呈した。

組 織 図構成員一覧

組織図

構成員一覧

理事長 副理事長·名誉所長 所 長 常務理事 常務理事·副所長

橋本德昭 山中千代衛 井澤靖和 三宅浩史 中塚正大 研究員

チームリーダー 井澤靖和(兼務) 李 大治

【レーザープロセス研究チーム】	主席研究員 (チームリーダー) 副主任研究員 副主任研究員 研究員	藤田雅之 ハイク コスロービアン(兼務) 染川智弘 櫻井俊光
【レーザー計測研究チーム】	主任研究員 (チームリーダー) 副主任研究員 研究員 研究員	島田義則 谷口誠治(兼務) オレグ コチャエフ 倉橋慎理
【レーザーバイオ化学研究チーム】	チームリーダー 副主任研究員 副主任研究員	中島信昭 ハイク コスロービアン 谷口誠治
【理論・シミュレーションチーム】	チートリーダー	++ 浬速和 (美 致)

【レーザーエネルギー研究チーム】

井澤靖和 (兼務) 【理論・シミュレーションチーム】 チームリーダ 主任研究員 砂原 淳 古河裕之 研究員 研究員 竹内 靖 【レーザー技術開発室】 主任研究員 本越伸二 (室長) 研究員 岸田知門 三宅浩史(兼務) 三宅浩史(兼務) 【総務部】 事務局長 総務部長 マネージャー 幸脇朱美

マネージャー

マネージャー

小野田理恵

高山大輔

	事務員 事務員 事務員	諸白景子 中川道子 大森和賀子
【特別研究員】	京都大学 名誉教授 元日新電機株式会社 元三菱電機株式会社 三重県立看護大学 名誉教授 元東京工業大学 准教授 大阪市立大学 特任教授 元(財)レーザー技術総合研究所	毛利木畑 新 加田 村本 加 中 谷 よ 一 田 七 本 加 中 谷 よ 信 一 天 一 昭 一 夫 一 昭 一 天 本 二 一 平 谷 島 信 一 四 一 平 谷 島 信 一 四 一 三 谷 二 四 一 三 谷 島 信 一 四 三 谷 島 信 一 四 三 谷 島 信 一 四 一 昭 二 三 三 〇 二 三 一 昭 二 三 三 〇 二 三 一 昭 二 三 三 三 二 三 三 三 三 二 三 三 二 三 三 二 三 三 二 三 二 三 二 三 二 三 二 三 二 三 二 三 二 三 二 三 二 三 二 三 二 三 二 三 二 二 二 二 二 二 二 二 二 二 二 二 二

大阪大学レーザーエネルギー学研究センター	センター長	疇地 宏
大阪大学レーザーエネルギー学研究センター	教授	斗内政吉
大阪大学レーザーエネルギー学研究センター	教授	萩行正憲
大阪大学レーザーエネルギー学研究センター	教授	西村博明
大阪大学レーザーエネルギー学研究センター	教授	乗松孝好
大阪大学レーザーエネルギー学研究センター	教授	宮永憲明
大阪大学レーザーエネルギー学研究センター	准教授	河仲進二
大阪大学レーザーエネルギー学研究センター	准教授	坂和洋一
大阪大学レーザーエネルギー学研究センター	准教授	藤田尚徳
大阪大学レーザーエネルギー学研究センター	准教授	藤岡恒介
大阪大学レーザーエネルギー学研究センター	田教	禄尚侯 <u>万</u>
大阪大学レーザーエネルギー学研究センター	諸師	藤木 清
大阪大学レーザーエネルギー学研究センター	四 中 四 夕 参 新 授	麻平 - 珀 西百功修
大阪大子レーザーエネルギー学研究センター	七百秋戊	国家の修 軍略考力
大阪大子レーリーニーホルトーー子切九ビンクーー	村工初及	員到至久 白工了社
入版入子入子阮二子切九杆 十匹十尚十尚陀工尚 正 定利	彩1文 数/运	兄 工 」171 西油却田
人服人子人子阮上子妍先特 ————————————————————————————————————	教授 	来伴州方
人版人子人子阮上子研允件	教授 ###	田田州大 宮七 博
人阪人子人子阮基礎工子研究科	教授	呂切 閂
大阪大学大学阮埋学研究科	作教授	山中十博
大阪大字接合科字研究所	教授	前原俗一
大阪大字接合科字研究所	作教授	塚本推俗
大阪大学	名誉教授	柳田祥二
大阪工業大学工学部	教授	西口彰夫
大阪産業大学工学部	教授	草場光博
大阪市立大学大学院理学研究科	教授	八ツ橋知幸
岡山大学大学院自然科学研究科	助教	西川 亘
核融合科学研究所	准教授	岩本晃史
核融合科学研究所	助教	安原 亮
関西学院大学理工学部	教授	玉井尚登
関西大学システム理工学部	教授	淺川 誠
関西大学システム理工学部	准教授	佐伯 拓
北見工業大学	助教	古瀬裕章
京都大学化学研究所	教授	阪部周二
京都大学化学研究所	准教授	橋田昌樹
京都大学大学院理学研究科	教授	七田芳則
京都大学大学院理学研究科	教授	大須賀篤弘
近畿大学理工学部	教授	吉田 実
近畿大学理工学部	教授	橋新裕一
近畿大学理工学部	教授	中野人志
近畿大学理工学部電気電子工学科	准教授	前田佳伸
高知工業高等専門学校	准教授	赤松重則
高知工業高等専門学校	准教授	芝 治也
摂南大学工学部	教授	田口俊弘
大学共同利用機関法人 情報・システム研究機構 国立極地研究所	准教授	藤田秀一
千華大学	教授	众 世宏明
雷気通信大学 企画調杏室	特任教授	植田憲一
電気通信大学レーザー新世代研究センター	准教授	西岡 一
東京工業大学大学院理工学研究科	新授	午部 麦
事京工業大学大学院総合理工学研究科	諸師	河村 御
市北大学大学院工学研究科	准新授	田山委治
事业大学大学院理学研究科	准教授	些日 穜
ノトキロノト・テラト・テリレイエコテットノロイド	田祝汉	不巴心衣

本良先端科学技術大学院大学	特任教授	· 博
日本原子力研究開発機構剪賀本部レーザー共同研究所	前長	大道博行
日本面子力研究開發機構量子ビー人広田研究部門	// 及 研 空 主 幹	八垣侍日
日本原子力研究開発機構豊子ビーム応用研究部間	御先朝主幹	山川与 佐ヶ木明
山平原1万明九册光城悟里10 5心而明九时1	· 小九町土轩 准 数 極	在《 不可
兀 生未 削 风 八 子 阮 八 子 火 支 米 剑 史 上 兴 吹 上 兴	作 教授	膝口们入一口四回
光库美剧成大学阮大学	特仕教授	二间团興
大阪産業大学	准教授	部谷 学
兵庫県立大学大学院工学研究科	教授	藤原閲夫
兵庫県立大学高度産業科学技術研究所	特任教授	望月孝晏
兵庫県立大学高度産業科学技術研究所	教授	宮本修治
広島大学大学院工学研究科	教授	遠藤琢磨
広島大学大学院工学研究科	准教授	城﨑知至
福井大学大学院工学研究科	教授	仁木秀明
福井大学大学院工学研究科	准教授	金邊忠
福岡工業大学工学部	教授	河村良行
北海道大学大学院工学研究院	教授	足立 智
北海道大学大学院工学研究院	教授	長谷川靖哉
宮崎大学産学・地域連携センター	准教授	甲藤正人
山梨大学大学院医学工学総合研究部	教授	張本鉄雄
山梨大学大学院医学工学総合研究部	助教	宇野和行
立命館大学情報理工学部	教授	陳 延偉
光産業創成大学院大学	客員教授	内田成明
福岡工業大学工学部 情報工学部	准教授	中村龍史

評議員議員選手・監事許議員選定委員企画委員

評議員

- 評議員 礒嶋茂樹 住友電気工業株式会社 研究統括部 担当技師長 兼 パワーシステム研究開発センター
 - 大塚茂樹 関西電力株式会社 原子燃料サイクル室長 原子力事業本部副事業本部長
 - 尾崎 博 富士電機株式会社 電力・社会インフラ事業本部発電プラント事業部 原子力技術部長
 - 加藤有一 一般財団法人電力中央研究所 常務理事
 - 菅 博文 浜松ホトニクス株式会社 取締役
 - 小森芳廣 日本原子力研究開発機構関西光科学研究所 所長
 - 田中健一 三菱電機株式会社開発本部 役員技監
 - 西 亨 一般財団法人大阪科学技術センター 専務理事
 - 東 邦夫 京都大学 名誉教授
 - 望月孝晏 兵庫県立大学 特任教授
 - 山中龍彦 大阪大学 名誉教授
 - 山本修一 パナソニック株式会社 R&D本部 全社CTO室 理事

理事・監事

- 理事長 橋本德昭 関西電力株式会社 取締役常務執行役員
- 理 事 山中千代衛 大阪大学 名誉教授
 - 中塚正大 大阪大学 名誉教授
 - 三宅浩史 公益財団法人レーザー技術総合研究所 事務局長
 - 疇地 宏 大阪大学 レーザーエネルギー学研究センター センター長
 - 井澤靖和 大阪大学 名誉教授
 - 梅田賢治 三菱重工業株式会社 エネルギー・環境ドメイン 原子力事業本部 原子力技術部 部長
 - 小野寺正洋 東京電力株式会社 原子燃料サイクル部長
 - 北山泰久 中部電力株式会社 技術開発本部 部長
 - 佐野雄二 株式会社東芝電力システム社 電力・社会システム開発センター技監
 - 友永匡哉 日本電気株式会社 関西支社 第三営業部長
 - 豊留昭宏 富士電機株式会社 関西支社 営業第二部長
 - 山本俊二 三菱電機株式会社 電力・産業システム事業本部 技術顧問
- 監 事 岡田 勉 株式会社三井住友銀行 大阪本店営業第二部長
 - 西原功修 大阪大学 名誉教授
 - 日根野文三 日根野公認会計士事務所 所長

評議員選定委員

- 大塚茂樹 関西電力株式会社 原子燃料サイクル室長 原子力事業本部副事業本部長
- 阪部周二 京都大学教授
- 佐々木孝友 大阪大学 名誉教授
- 西原功修 大阪大学 名誉教授
- 三宅浩史 公益財団法人レーザー技術総合研究所 事務局長

企画委員

- 委員長 仙藤敏和 関西電力株式会社 原子燃料サイクル室 原子燃料サイクル部長
- 委 員 粟津邦男 大阪大学 教授
 - 井上哲也 一般財団法人大阪科学技術センター 総務部 企画室長
 - 植田憲一 電気通信大学 特任教授
 - 大谷浩司 三菱電機株式会社 電力システム製作所 磁気応用先端システム部 次長
 - 沖野圭司 オムロンレーザーフロント株式会社 取締役
 - 奥田泰弘 住友電気工業株式会社 エレクトロニクス・材料研究所 エレクトロニクス接続技術研究部 部長
 - 兒玉了祐 大阪大学 教授
 - 近藤公伯 独立行政法人日本原子力研究開発機構 先進ビーム技術研究ユニット長
 - 白神宏之 大阪大学 教授
 - 竹辺晴夫 富士電機株式会社 エネルギー事業本部 事業企画部 担当部長
 - 田中正人 関西電力株式会社 原子燃料サイクル室 サイクル事業グループ マネジャー
 - 斗内政吉 大阪大学 教授
 - 中熊哲弘 東京電力株式会社 原子燃料サイクル部 サイクル技術グループ マネージャー
 - 中島信昭 大阪市立大学 理学研究科理学部 特任教授
 - 西村博明 大阪大学 教授
 - 浜崎 学 三菱重工業株式会社 原子力事業本部 原子力技術部次長
 - 藤原閱夫 兵庫県立大学 教授
 - 宮永憲明 大阪大学 教授
 - 向井成彦 株式会社 東芝 電力システム社 電力・社会システム技術開発センター 電気計装システム開発部 部長
 - 森 勇介 大阪大学 教授
 - 山畑和樹 関西電力株式会社 研究開発室 研究推進グループ マネジャー

賛助 会員

【建設業】

株式会社環境総合テクノス 関電プラント株式会社 株式会社きんでん

【鉄鋼・非鉄金属製造】 株式会社神戸製鋼所 住友電気工業株式会社 三菱電線工業株式会社

【電気機器具製造業】

株式会社ダイヘン

株式会社東芝

日新電機株式会社

日本電気株式会社

株式会社日本ネットワークサポート

パナソニック株式会社

株式会社日立製作所

富士電機株式会社

三菱電機株式会社

【機械・輸送用機器具】

三菱重工業株式会社

【精密機器具製造業】 有限会社岡本光学加工所 オムロンレーザーフロント株式会社 株式会社片岡製作所 光伸光学工業株式会社 ジオマテック株式会社 株式会社島津製作所 浜松ホトニクス株式会社

【商社・その他】 株式会社オプトサイエンス

【銀行・その他金融】 株式会社三井住友銀行

【電気・ガス業】 大阪ガス株式会社 関西電力株式会社 中国電力株式会社 北陸電力株式会社 日本原子力発電株式会社

【鉄道業】 西日本旅客鉄道株式会社

【サービス業・その他】 関電不動産株式会社 株式会社ケイ・オプティコム

-125 -

【団体関係】

公益財団法人応用光学研究所

- 一般財団法人大阪科学技術センター
- 一般財団法人関西情報センター
- 一般財団法人電力中央研究所
- 一般財団法人光産業技術振興協会
- 一般社団法人レーザー学会

合計40社(他1社含む)

おわりに

レーザー技術総合研究所年報第 26 巻 ILT2014(平成 25 年度成果報告書)を取りまと めました。7 月に東京と大阪で開催する成果報告会においてその内容をご報告し、皆様か らご批判、ご教示を頂きたいものと願っています。

当研究所では、レーザーエネルギー、レーザープロセス、レーザー計測、レーザーバ イオ化学、理論・シミュレーションの5研究チームとレーザー技術開発室の体制で研究を 進めております。また、全所横断型の産業用レーザー開発プロジェクトチームを立ち上げ ました。

プロジェクトチームでは、小型、高出力、高効率、高ビーム品質の固体レーザー開発 を目標に、小型の装置による基礎実験を進め、レーザー出力特性や熱解析の成果を下にし て、高出力レーザー設計手法の確立をめざしています。また、多ビーム構成により更なる 高出力を実現するため、新しいコヒーレントビーム結合方式を提案し、実証実験を進めて います。

チーム研究でも成果の積み上げを図っています。レーザー超音波探傷技術開発では、 山陽新幹線トンネルにおける内部欠陥検出実地試験でその有効性を実証することができ、 実用化に大きく一歩近づきました。新幹線トンネルの中央通路内を走行しながら欠陥検査 を行えるように検出システムの小型化を進めるとともに、コンクリートクラック深さの測 定、天井に取り付けられたアンカーボルトの健全性評価、高速道路橋梁の健全性評価など、 レーザー超音波技術の応用分野拡大をめざした研究も進めています。碍子表面の塩分量計 測技術開発でも検査システムの小型化を進め、可搬型システムとハンドホールド型計測へ ッドを開発しました。フェムト秒レーザー加工、溶液中に溶存している不純物の遠隔計測 をめざすラマンライダー、次世代半導体リソグラフィ用 EUV 光源のシミュレーション研 究でも順調な進展が見られました。溶液中でのレーザーアブレーションを利用した酸化還 元反応とナノ粒子生成、メタマテリアルを利用するテラへルツ光源など、新しい研究の芽 も生まれました。レーザー技術開発室では、産業界からの様々な技術相談に対応するとと もに、光学素子の損傷評価や高耐力化の分野で貢献することができました。

今後とも、研究開発活動を積極的に推進し、わが国の産業活力向上に貢献できるよう、 鋭意努力する所存でございます。長年にわたる皆様方のご指導、ご協力に深く感謝申し上 げますとともに、これからも相変わりませず、ご支援、ご鞭撻下さいますようお願い申し 上げます。

平成 26 年 7 月

公益財団法人 レーザー技術総合研究所 所長 井 澤 靖 和

ILT2014 年報

平成26年7月 発行

公益財団法人 レーザー技術総合研究所

〒 550-0004 大阪市西区靱本町1丁目8番4号 大阪科学技術センタービル4F

TEL (06) 6443-6311 代

